Effects of essential oil from Chamaecyparis obtusa on cytokine genes in the hippocampus of maternal separation rats

2014 ◽  
Vol 92 (2) ◽  
pp. 95-101 ◽  
Author(s):  
Hae Jeong Park ◽  
Su Kang Kim ◽  
Won Sub Kang ◽  
Jong-Min Woo ◽  
Jong Woo Kim

We investigated the effects of an essential oil from Chamaecyparis obtusa (EOCO) on early life stress, using maternal separation (MS) rats and a microarray method to analyze the changes in gene expressions caused by EOCO in the hippocampus of MS rats. Rats in the MS groups were separated from their respective mothers from postnatal day (pnd) 14 to 28. Rats in the EOCO-treated groups were exposed to EOCO for 1 or 2 h by inhalation from pnd 21 to 28. The EOCO-treated MS rats showed decreased anxiety-related behaviors compared with the untreated MS rats in the elevated plus-maze (EPM) test. In the microarray analysis, we found that EOCO downregulated the expressions of cytokine genes such as Ccl2, Il6, Cxcl10, Ccl19, and Il1rl in the hippocampus of MS rats, and also confirmed that using reverse transcriptase – PCR. In particular, the expressions of Ccl2 and Il6 were predominantly decreased by EOCO in the hippocampus of MS rats. Interestingly, protein expression was also reduced by EOCO in MS rats. These results indicate that EOCO decreases MS-induced anxiety-related behaviors, and modulates cytokines, particularly Ccl2 and Il6, in the hippocampus of MS rats.

2019 ◽  
Vol 3 (s1) ◽  
pp. 9-10
Author(s):  
Alexandra Moussa-Tooks ◽  
Ken Mackie ◽  
John Green ◽  
Lisa Bartolomeo ◽  
Alex Gimeno ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Early life stress is known to greatly impact neurodevelopment during critical periods, conferring risk for various psychopathologies, including the onset and exacerbation of schizophrenia and anxiety disorders. The endocannabinoid system is highly integrated into the stress response and may be one means by which early life stress produces such deleterious effects. Using a naturalistic, ecologically valid animal model, this study explored interactions between the stress response and endocannabinoid systems within the cerebellum, a region dense with the CB1 endocannabinoid receptors and shown to be susceptible to stress. METHODS/STUDY POPULATION: This study explored behavioral and neural impacts of early life stress in Long-Evans rats reared with or without limited access to bedding material during postnatal day (PND) 2-9. Corticosterone (CORT) levels were measured at PND8 and 70. During PND50-70, rats were assessed on Novel Object Recognition to test memory, Rotarod to evaluate cerebellar integrity, Elevated Plus Maze to assay anxiety, Social Preference, and Eyeblink Conditioning, a cerebellar-dependent and endocannabinoid-mediated task. Lipid analysis was performed on PND70 tissue samples of cerebellar interpositus (IP) nucleus via high-performance liquid chromatography and tandem mass spectrometry. RESULTS/ANTICIPATED RESULTS: Both male and female rats experiencing early life stress exhibited significantly impaired recognition memory (N = 16-20/group). Female rats having undergone stress exhibited decreased social preference compared to normally reared females (N = 11/group). Stressed males showed facilitated eyblink conditioning compared to normally reared males (N = 7-9/group). There were no group differences in rotarod or elevated plus maze performance or CORT levels at PND8 or 70 across rearing groups. At PND70, male rats experiencing early life stress exhibited a significant decrease in 2-arachidonoyl glycerol (2-AG) and arachidonic acid levels in the IP nucleus compared to normally reared males (N = 8-9/group). Compared to normally reared females, those experiencing early life stress exhibited a significant increase in prostaglandin E2 levels in the IP nucleus (N = 6-7/group). DISCUSSION/SIGNIFICANCE OF IMPACT: Early life stress, induced by limited bedding, resulted in sex-specific behavioral and lipid impairments. Results suggest that stress causes long-term alterations in endocannabinoid dynamics in males in the cerebellar IP nucleus and sex-related lipids in female cerebellum. These changes may contribute to observed long-term behavioral aberrations. Moreover, findings suggest these behavioral changes may be the result of negative-feedback dysfunction (as evidenced by decreased endocannabinoids in males) or increased neural inflammation or proliferation (as evidenced by increased prostaglandins in females). Future analysis will quantify mRNA and protein for cannabinoid receptors to better characterize aberrations to this system. Moreover, other neural regions dense with cannabinoid receptors (i.e., PFC, hippocampus) will be investigated. This work provides a basis for understanding stress impacts on the development of cognitive deficits observed in psychotic and anxiety disorders. Specifically, facilitation of eyblink conditioning complements research in humans with anxiety disorders. Broadly, understanding stress-related endocannabinoid dysregulation may provide insights into risks for, and the development of, psychopathology and uncover novel therapeutic targets with high translational power.


2021 ◽  
Vol 22 (4) ◽  
pp. 1899 ◽  
Author(s):  
Hae Jeong Park ◽  
Sang A. Kim ◽  
Won Sub Kang ◽  
Jong Woo Kim

Recent studies have reported that changes in gut microbiota composition could induce neuropsychiatric problems. In this study, we investigated alterations in gut microbiota induced by early-life stress (ELS) in rats subjected to maternal separation (MS; 6 h a day, postnatal days (PNDs) 1–21), along with changes in inflammatory cytokines and tryptophan-kynurenine (TRP-KYN) metabolism, and assessed the differences between sexes. High-throughput sequencing of the bacterial 16S rRNA gene showed that the relative abundance of the Bacteroides genus was increased and that of the Lachnospiraceae family was decreased in the feces of MS rats of both sexes (PND 56). By comparison, MS increased the relative abundance of the Streptococcus genus and decreased that of the Staphylococcus genus only in males, whereas the abundance of the Sporobacter genus was enhanced and that of the Mucispirillum genus was reduced by MS only in females. In addition, the levels of proinflammatory cytokines were increased in the colons (IFN-γ and IL-6) and sera (IL-1β) of the male MS rats, together with the elevation of the KYN/TRP ratio in the sera, but not in females. In the hippocampus, MS elevated the level of IL-1β and the KYN/TRP ratio in both male and female rats. These results indicate that MS induces peripheral and central inflammation and TRP-KYN metabolism in a sex-dependent manner, together with sex-specific changes in gut microbes.


2018 ◽  
Vol 246 (3) ◽  
pp. 155-165 ◽  
Author(s):  
Ryusuke Ouchi ◽  
Tasuku Kawano ◽  
Hitomi Yoshida ◽  
Masato Ishii ◽  
Tomomitsu Miyasaka ◽  
...  

2019 ◽  
Vol 79 (1) ◽  
pp. 113-132 ◽  
Author(s):  
Marion Rincel ◽  
Muriel Darnaudéry

The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut–brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut–brain axis. Further research is required to understand the complex mechanisms underlying gut–brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Englund ◽  
Joni Haikonen ◽  
Vasilii Shteinikov ◽  
Shyrley Paola Amarilla ◽  
Tsvetomira Atanasova ◽  
...  

AbstractEarly life stress (ELS) is a well-characterized risk factor for mood and anxiety disorders. GABAergic microcircuits in the amygdala are critically implicated in anxiety; however, whether their function is altered after ELS is not known. Here we identify a novel mechanism by which kainate receptors (KARs) modulate feedforward inhibition in the lateral amygdala (LA) and show that this mechanism is downregulated after ELS induced by maternal separation (MS). Specifically, we show that in control rats but not after MS, endogenous activity of GluK1 subunit containing KARs disinhibit LA principal neurons during activation of cortical afferents. GluK1 antagonism attenuated excitability of parvalbumin (PV)-expressing interneurons, resulting in loss of PV-dependent inhibitory control and an increase in firing of somatostatin-expressing interneurons. Inactivation of Grik1 expression locally in the adult amygdala reduced ongoing GABAergic transmission and was sufficient to produce a mild anxiety-like behavioral phenotype. Interestingly, MS and GluK1-dependent phenotypes showed similar gender specificity, being detectable in male but not female rodents. Our data identify a novel KAR-dependent mechanism for cell-type and projection-specific functional modulation of the LA GABAergic microcircuit and suggest that the loss of GluK1 KAR function contributes to anxiogenesis after ELS.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Dao H Ho ◽  
Jennifer S Pollock

Chromatin remodeling is an important factor in the etiology of vascular pathologies. Also, early life stress (ELS) is linked to increased risk of vascular disease in adults. We used maternal separation with early weaning (MSEW) to study mechanisms of ELS-mediated adult vascular dysfunction in male C57BL/6J mice. Litters were subjected to maternal separation 4h/day (postnatal day (PD) 2-5) and 8h/day (PD6-16), and weaned at PD17. Control (CON) litters were undisturbed until weaning at PD21. Subsequent experiments were performed at 12 weeks old. MSEW blunted aortic ACh-mediated vasorelaxation (MSEW: 68% vs CON: 90%, p=0.01), while SNP-induced vasorelaxation was similar in CON and MSEW aortae. Apocynin (300 μM) and superoxide dismutase (100 U/mL) normalized MSEW-induced endothelial dysfunction. We hypothesize that ELS induces aortic endothelial dysfunction by increasing NADPH oxidase expression and/or decreasing nitric oxide synthase 3 (NOS3) expression. Aortic protein expression of NADPH oxidase subunit p67 was elevated in MSEW mice (45% increase from CON, n=11, p=0.02). NOS3 protein expression and NOS3 serine 1177 phosphorylation was not different between groups, indicating that NOS3 activation by phosphorylation does not contribute to ELS-induced endothelial dysfunction. We further hypothesize that chromatin modification mediates ELS-induced endothelial dysfunction. Aortic mRNA expressions of 84 chromatin modification enzymes (methyltransferases, demethylases, acetyltransferases, deacetylases) were assessed by qRT-PCR. Only histone deacetylase (HDAC) 1, 6 and 9 mRNA levels were significantly upregulated in MSEW aortae compared to CON (17%, 29% and 67% increase, respectively, p<0.05). However, only HDAC 9 protein expression was elevated in MSEW aortae (2 fold increase from CON, n=6, p=0.01). Accordingly, histone 3 lysine acetylation was slightly decreased in MSEW aortae (16% decrease from CON, n=6, p = 0.06). Pretreatment of aortae with an HDAC inhibitor, trichostatin A (TSA), normalized ACh-induced vasorelaxation in MSEW mice (MSEW: 68% vs MSEW + TSA: 88%, p=0.02), while not affecting ACh-induced vasorelaxation in CON mice. We conclude that ELS induces endothelial dysfunction, most likely, through an HDAC 9-mediated pathway.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Carmen De Miguel ◽  
Dao H Ho ◽  
Analia S Loria ◽  
Ijeoma Obi ◽  
Jennifer S Pollock

We previously reported that maternal separation (MatSep), an animal model of early life stress, sensitizes rats to pro-hypertensive stimuli in adulthood. We hypothesized that MatSep induces a renal pro-inflammatory immune response. Immune cell populations and expression of cytokines were assessed by magnetic bead isolation, FACS analysis, ELISA and RT-PCR in adult male MatSep and normally-reared littermate control rats. Circulating and renal mononuclear or T cell numbers were similar between control and MatSep rats (n=4-11/group, p>0.05). Both groups presented similar percentages of circulating macrophages and T H , T C , and T reg cells (n=4, p>0.05). However, the percentage of circulating B cells was significantly decreased in MatSep rats (23.7±1.2% vs. 20.1±0.7%; n=4, p<0.05). Pro-inflammatory cytokine IL-1Beta was significantly elevated in kidneys from MatSep rats (4.4±0.5 vs. 7.9±1.0 pg/mg prot; n=7-8/group; p<0.05). However, IFN-gamma, IL-6, and IL-4 were not different between control and MatSep rats. To further assess the immune system in MatSep and control rats, we acutely challenged adult rats with lipopolysaccharide (LPS; 2 mg/kg; i.v., 14 h). LPS significantly elevated renal expression of pro-inflammatory chemokine receptors (CCR3, CCR4, CXCR4), cytokines (IFN-gamma, CCL3, CCL4, IL-16), and activation markers (CD40, CD40lg) in MatSep rats (4 to 6 fold increase; n=5/group, p<0.05), suggesting that MatSep induces an exaggerated pro-inflammatory renal immune response to LPS. In conclusion, early life stress induces a renal pro-inflammatory status in adulthood that leads to sensitization to further immune challenges. Funded by P01 HL 69999 to JSP, NIH T32 DK007545 to CDM, F32 HL 116145 to DHH and K99/R00 HL 111354 to ASL.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Megan K Rhoads ◽  
Kasi C McPherson ◽  
Keri M Kemp ◽  
Bryan Becker ◽  
Jackson Colson ◽  
...  

Early life stress (ELS) is an independent risk factor for the development of cardiovascular disease in adulthood in both humans and rodent models. Maternal separation and early weaning (MSEW), a model of ELS, produces mice with an increased risk of cardiovascular dysfunction in adulthood, despite resting blood pressures (BP), heart rates (HR), and body weights comparable to normally reared controls. Autonomic regulation of HR and BP is an important component of the homeostatic response to stress but has not been investigated in MSEW mice. We hypothesized that exposure to MSEW impairs autonomic function at baseline and in response to an acute psychosocial stressor in adult male mice. C57Bl/6J litters were randomly assigned to MSEW or normally reared control conditions. MSEW litters were separated from dams for 4 h on postnatal days (PDs) 2-5, 8 h on PDs 6-16, and weaned at PD 17. Control litters were undisturbed until weaning at PD 21. At 9 weeks old, telemeters were implanted in MSEW (n=16) and control mice (n=12). During cage switch stress (CSS), mice were moved to a soiled, unfamiliar cage for 4 h. HR, systolic BP (SBP), diastolic BP (DBP), and activity (monitored by telemetry) were similar between control and MSEW mice at baseline and during CSS (p>0.05, 2-way ANOVA). Spectral analysis of HR, SBP, and DBP indicated that HR variability (HRV) total power was lower in MSEW mice during the 12 h inactive period compared to controls (18.9±1.1 ms 2 vs. 27.5±3.1 ms 2 ; p=0.0033, 2-way ANOVA) at baseline. HRV low frequency (LF) power was also lower during the 12 h inactive period in MSEW mice (4.2±0.4 ms 2 vs.6.6±0.9 ms 2 ; p=0.009). At baseline, 12 h and 24 h DBP variability LF/high frequency (HF) ratio, normalized LF, and normalized HF power were lower in the MSEW group (p<0.05, all comparisons). During the final 90 minutes of CSS, MSEW mice had lower HRV total, LF, and HF power compared to controls (p<0.05); although HR, SBP, DBP, and activity remained similar between groups. These data suggest that MSEW mice have impaired autonomic control of HR and DBP and lack the ability to robustly respond and recover from an acute stressor. Reduced responsiveness of the autonomic nervous system may contribute to the increased risk of cardiovascular disease development in adult mice exposed to MSEW.


Stress ◽  
2020 ◽  
pp. 1-9
Author(s):  
María Banqueri ◽  
Alba Gutiérrez-Menéndez ◽  
Marta Méndez ◽  
Nélida M. Conejo ◽  
Jorge L. Arias

2020 ◽  
Vol 129 (1) ◽  
pp. 58-65
Author(s):  
Timothy M. Mahanes ◽  
Margaret O. Murphy ◽  
An Ouyang ◽  
Frederique B. Yiannikouris ◽  
Bradley S. Fleenor ◽  
...  

This study demonstrates that there was no correlation between circulating levels of angiotensinogen (AGT) and the development of vascular stiffness in rats exposed to early-life stress and fed a normal diet. This study also shows that early-life stress-induced hypersensitive vascular contractility to angiotensin II in rats fed a high-fat diet is independent of circulating levels of AGT and occurs without further progression of vascular stiffness. Our data show that early-life stress primes the adipose tissue to secrete AGT in a sex- and species-independent fashion.


Sign in / Sign up

Export Citation Format

Share Document