Oxymatrine attenuates amyloid beta 42 (Aβ1–42)-induced neurotoxicity in primary neuronal cells and memory impairment in rats

2019 ◽  
Vol 97 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Peiliang Dong ◽  
Xiaomeng Ji ◽  
Wei Han ◽  
Hua Han

Amyloid beta 42 (Aβ1–42)-induced oxidative stress causes the death of neuronal cells and is involved in the development of Alzheimer’s disease. Oxymatrine (OMT) inhibits oxidative stress. In this study, we investigated the effect of OMT on Aβ1–42-induced neurotoxicity in vivo and in vitro. In the Morris water maze test, OMT significantly decreased escape latency and increased the number of platform crossings. In vitro, OMT markedly increased cell viability and superoxide dismutase activity. Moreover, OMT decreased lactate dehydrogenase leakage, malondialdehyde content, and reactive oxygen species in a dose-dependent manner. OMT upregulated the ratio of Bcl-2/Bax and downregulated the level of caspase-3. Furthermore, OMT inhibited the activation of MAP kinase (ERK 1/2, JNK) and nuclear factor κB. In summary, OMT may potentially be used in the treatment of Alzheimer’s disease.

2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yara Hassaan ◽  
Heba Handoussa ◽  
Ahmed H. El-Khatib ◽  
Michael W. Linscheid ◽  
Nesrine El Sayed ◽  
...  

Epidemiological studies have proven an association between consumption of polyphenols and prevention of Alzheimer’s disease, the most common form of dementia characterized by extracellular deposition of amyloid beta plaques. The aim of this study is pharmacological screening of the aqueous alcohol extract ofMarkhamia platycalyxleaves,Schotia brachypetalaleaves and stalks, and piceatannol compared to aqueous alcohol extract ofCamellia sinensisleaves as potential Alzheimer’s disease drugs. LC-HRESI(-ve)-MSnwas performed to identify phenolics’ profile ofSchotia brachypetalastalks aqueous alcohol extract and revealed ten phenolic compounds as first report: daidzein, naringin, procyanidin isomers, procyanidin dimer gallate, quercetin 3-O-rhamnoside, quercetin 3-O-glucuronide, quercetin hexose gallic acid, quercetin hexose protocatechuic acid, and ellagic acid. Alzheimer’s disease was induced by a single intraperitoneal injection of LPS. Adult male Swiss albino mice were divided into groups of 8–10 mice each receiving treatment for six days.In vivobehavioral tests (Y maze and object recognition) andin vitroestimation of amyloid beta 42 by ELISA showed significant differences between results of treated and nontreated animals.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1275
Author(s):  
Soo Yong Park ◽  
Joo Yeong Kang ◽  
Taehee Lee ◽  
Donggyu Nam ◽  
Chang-Jin Jeon ◽  
...  

Alzheimer’s disease (AD) is a complex, age-related neurodegenerative disease that is the most common form of dementia. However, the cure for AD has not yet been founded. The accumulation of amyloid beta (Aβ) is considered to be a hallmark of AD. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), also known as beta secretase is the initiating enzyme in the amyloidogenic pathway. Blocking BACE1 could reduce the amount of Aβ, but this would also prohibit the other functions of BACE1 in brain physiological activity. SPONDIN1 (SPON1) is known to bind to the BACE1 binding site of the amyloid precursor protein (APP) and blocks the initiating amyloidogenesis. Here, we show the effect of SPON1 in Aβ reduction in vitro in neural cells and in an in vivo AD mouse model. We engineered mouse induced neural stem cells (iNSCs) to express Spon1. iNSCs harboring mouse Spon1 secreted SPON1 protein and reduced the quantity of Aβ when co-cultured with Aβ-secreting Neuro 2a cells. The human SPON1 gene itself also reduced Aβ in HEK 293T cells expressing the human APP transgene with AD-linked mutations through lentiviral-mediated delivery. We also demonstrated that injecting SPON1 reduced the amount of Aβ and ameliorated cognitive dysfunction and memory impairment in 5xFAD mice expressing human APP and PSEN1 transgenes with five AD-linked mutations.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Sayyad Ali ◽  
Muhammad Hassham Hassan Bin Asad ◽  
Fahad Khan ◽  
Ghulam Murtaza ◽  
Albert A. Rizvanov ◽  
...  

Proteases BACE1 (β-secretases) enzymes have been recognized as a promising target associated with Alzheimer’s disease (AD). This study was carried out on the principles of molecular docking, chemical synthesis, and enzymatic inhibition of BACE1 enzymes via biaryl guanidine-based ligands. Based on virtual screening, thirteen different compounds were synthesized and subsequently evaluated via in vitro and in vivo studies. Among them, 1,3-bis(5,6-difluoropyridin-3-yl)guanidine (compound (9)) was found the most potent (IC50=97±0.91 nM) and active to arrest (99%) β-secretase enzymes (FRET assay). Furthermore, it was found to improve the novel object recognition test and Morris water maze test significantly (p<0.05). Improved pharmacokinetic parameters, viz., Log Po/w (1.76), Log S (-2.73), and better penetration to the brain (BBB permeation) with zero Lipinski violation, made it possible to hit the BACE1 as a potential therapeutic source for AD.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1571
Author(s):  
Niti Sharma ◽  
Mario A. Tan ◽  
Seong Soo A. An

Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative diseases worldwide. In an effort to search for new strategies for treating AD, natural products have become candidates of choice. Plants are a rich source of bioactive and effective compounds used in treating numerous diseases. Various plant extracts are known to display neuroprotective activities by targeting different pathophysiological pathways in association with the diseases, such as inhibiting enzymes responsible for degrading neurotransmitters, reducing oxidative stress, neuroprotection, inhibiting amyloid plaque formation, and replenishing mitochondrial function. This review presented a comprehensive evaluation of the available scientific literature (in vivo, in vitro, and in silico) on the neuroprotective mechanisms displayed by the extracts/bioactive compounds from spices belonging to the Apiaceae family in ameliorating AD.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1837 ◽  
Author(s):  
Uthaiwan Suttisansanee ◽  
Somsri Charoenkiatkul ◽  
Butsara Jongruaysup ◽  
Somying Tabtimsri ◽  
Dalad Siriwan ◽  
...  

Alzheimer’s disease (AD) is the most common form of dementia, characterized by chronic neuron loss and cognitive problems. Aggregated amyloid beta (Aβ) peptides, a product of cleaved amyloid precursor protein (APP) by beta-secretase 1 (BACE-1), have been indicated for the progressive pathogenesis of AD. Currently, screening for anti-AD compounds in foodstuffs is increasing, with promising results. Hence, the purpose of this study was to investigate the extraction conditions, phytochemical contents, and anti-AD properties, targeting Aβ peptides of Morus cf. nigra ‘Chiang Mai’ (MNCM) both in vitro and in vivo. Data showed that the aqueous extract of MNCM contained high amounts of cyanidin, keracyanin, and kuromanin as anthocyanidin and anthocyanins. The extract also strongly inhibited cholinesterases and BACE-1 in vitro. Moreover, MNCM extract prevented Aβ-induced neurotoxicity and promoted neurite outgrowth in neuronal cells. Interestingly, MNCM extract reduced Aβ1–42 peptides and improved locomotory coordination of Drosophila co-expressing human APP and BACE-1, specifically in the brain. These findings suggest that MNCM may be useful as an AD preventive agent by targeting Aβ formation.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Yuan Wang ◽  
Qiang Wang ◽  
Jie Li ◽  
Gang Lu ◽  
Zhibin Liu

Background/Aims. Alzheimer’s disease (AD) is the most common neurodegenerative disease, and all researchers working in this field agree that oxidative stress is intimately associated with Alzheimer disease. In this study, we hypothesized that glutamine (Gln) offers protection against oxidative stress injury in SAMP8 mice as well as the underlying mechanism. Methods. The SAMP8 mice received glutamine intragastrically for 8 consecutive weeks to evaluate the protective effect of glutamine on oxidative stress in AD mice involving Wnt3a/β-catenin signaling pathway. In addition, rat pheochromocytoma tumor cell line PC12 was pretreated with 32 μM glutamine for 2 h followed by 24 h incubation with 40 μM Aβ25-35 to obtain in vitro data. Results. In vivo the administration of glutamine was found to ameliorate behavioral deficits and neuron damage, increase superoxide dismutase (SOD) and glutathione peroxidase (GSH-XP) activity, reduce the malondialdehyde (MDA) content, and activate the Wnt3a/β-catenin signaling pathway in SAMP8 mice. In vitro glutamine treatment decreased the toxicity of Aβ25-35 on PC12 cells and prevented apoptosis. Additionally, glutamine treatment increased SOD and GSH-XP activity and decreased MDA content and increased Wnt3a and β-catenin protein levels. Interestingly, the DKK-1 (Wnt3a/β-catenin pathway inhibitor) decreased the antioxidant capacity of glutamine in Aβ25-35-treated PC12 cells. Conclusion. This study suggests that glutamine could protect against oxidative stress-induced injury in AD mice via the Wnt3a/β-catenin signaling pathway.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Qi Qi Pang ◽  
Ji-Hyun Kim ◽  
Ji Myung Choi ◽  
Jia-Le Song ◽  
Sanghyun Lee ◽  
...  

Abnormal production and degradation of amyloid beta (Aβ) in the brain lead to oxidative stress and cognitive impairment in Alzheimer’s disease (AD). Cirsium japonicum var. maackii (CJM) is widely used as an herbal medicine and has antibacterial and anti-inflammatory properties. This study focused on the protective effect of the ethyl acetate fraction from CJM (ECJM) on Aβ25-35-induced control mice. In the T-maze and novel object recognition test, ECJM provided higher spatial memory and object recognition compared to Aβ25-35 treatment alone. In the Morris water maze test, ECJM-administered mice showed greater learning and memory abilities than Aβ25-35-induced control mice. Additionally, ECJM-administered mice experienced inhibited lipid peroxidation and nitric oxide production in a dose-dependent manner. The present study indicates that ECJM improves cognitive impairment by inhibiting oxidative stress in Aβ25-35-induced mice. Therefore, CJM may be useful for the treatment of AD and may be a potential material for functional foods.


Sign in / Sign up

Export Citation Format

Share Document