Fall-applied cattle manure did not provide nitrogen fertilizer value to spring cereal crops

2021 ◽  
pp. 1-4
Author(s):  
Leanne Ejack ◽  
Chih-Yu Hung ◽  
Joann K. Whalen

Fall-applied manure may have nitrogen (N) fertilizer value for spring-seeded crops. We applied liquid or solid cattle manure to plots on a sandy-loam soil in southern Quebec in fall. The following spring, half of each plot received urea fertilizer before planting the spring cereal crop. Total N content of the spring cereal at tillering, flowering, and maturity was lower in subplots without urea, and yields were up to 183% less in the no-urea subplots, regardless of whether liquid or solid manure was applied in fall. Fall-applied manure did not provide plant-available N to spring cereals under our growing conditions.

2020 ◽  
Vol 4 (11(80)) ◽  
pp. 37-39
Author(s):  
A. Ilinskiy

The paper presents the results of a lysimetric experiment on sod-podzolic sandy loam soil with the use of effluent from cattle manure, biocompost based on animal husbandry and municipal waste as meliorants. The positive effect of the studied meliorants on the yield of annual grasses was experimentally established. The largest increase in the hay yield of 95.3 % was obtained in the variant with the use of biocompost as a meliorant.


Soil Research ◽  
2000 ◽  
Vol 38 (1) ◽  
pp. 13 ◽  
Author(s):  
R. G. Silva ◽  
K. C. Cameron ◽  
H. J. Di ◽  
N. P. Smith ◽  
G. D. Buchan

A field lysimeter experiment was conducted to determine the effect of macropore flow on the transport of surface-applied cow urine N through soil. The lysimeters (500 mm diameter by 700 mm depth) used for this experiment were collected from Templeton fine sandy loam soil (Udic Ustochrept), which had been under ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) pasture for 9–10 years. The effect of macropore flow on urine-N leaching was determined by leaching experiments under 0.5 kPa and 0 kPa water tensions (suctions) imposed on top of the lysimeter using a disc tension infiltrometer. The 0.5 kPa suction prevented soil pores >600 µm diameter from conducting water and solutes, while the 0 kPa suction allowed conduction under ‘field saturated’ condition. Pores >600 µm diameter transmitted about 98% of the total nitrogen (N) leached below 700 mm depth. The main form of N transmitted under 0 kPa was ammonium (NH4 -N), accounting for 10.5% of the total N applied at 0 kPa suction. This was significantly higher than the amount of NH 4 -N leached at 0.5 kPa suction, which accounted for 0.17% of N applied. The urea-N in the leachate reached 16 mg/L at 0 kPa suction, and accounted for 1.6% of the total N applied. No urea was detected in the leachate at the 0.5 kPa suction. The concentrations and amounts of nitrate (NO3 -N) leached were very low and did not differ between the two suctions. The forms and amounts of N leached were affected by the interactions of macropore flow and N transformations in the soil, and the environmental conditions during the two leaching events. From this work, it is recommended that stock should be removed 1–2 days before irrigation water is applied as this will allow animal urine to diffuse into soil micropores and thus decrease N leaching by macropore flow.


2006 ◽  
Vol 144 (3) ◽  
pp. 229-235 ◽  
Author(s):  
S. G. SOMMER ◽  
L. S. JENSEN ◽  
S. B. CLAUSEN ◽  
H. T. SØGAARD

Volatilization of ammonia (NH3) from slurry applied in the field is considered a risk to the environment and reduces the fertilizer value of the slurry. To reduce volatilization a better understanding of the slurry–soil interaction is needed. Therefore, the present study focuses on measuring NH3 volatilization as affected by differences in infiltration. Livestock slurries with different dry matter (DM) composition and viscosity were included in the experiments by using untreated cattle and pig slurry, pig slurry anaerobically digested in a biogas plant and pig slurry anaerobically digested and physically separated. NH3 volatilization was measured using dynamic chambers and related to infiltration of the livestock slurries in the soil by measuring chloride (Cl−) and Total Ammoniacal Nitrogen (TAN=ammonium (NH4+)+NH3) concentrations in soil at different depths from 0·5 to 6·0 cm from the soil surface. The slurries were applied to sandy and sandy-loam soils packed in boxes within the chambers. There were no significant differences in relative volatilization of NH3 from untreated cattle and pig slurries, but anaerobic digestion of pig slurry increased volatilization due to increases in pH. However, physical separation of the digested slurry reduced the volatilization compared with untreated slurry, due to increased infiltration. In general, the volatilization decreased significantly with increased infiltration. The present study shows that NH3 volatilization from applied slurry can be related to infiltration and that infiltration is related to slurry composition (i.e. DM content and particle size distribution) and soil water content. The infiltration of liquid (measured by Cl− infiltration) was affected by soil water potential, therefore, Cl− infiltrated deeper into the sandy loam soil than the sandy soil at similar gravimetric soil water values. Dry matter (DM) and large particles (>1 mm) of the slurry reduced infiltration of liquid. A high proportion of small particles (<0·025 mm) facilitated infiltration of TAN.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 596f-596 ◽  
Author(s):  
Ahmed A. Tawfik ◽  
Jiwan P. Palta

The optimum temperature regime for Solanum tuberosum cv. Russet Burbank is usually 20/15°C day/night. We studied the impact of heat stress (30/25°C, day/night) on the growth of this heat sensitive cultivar under controlled conditions (UW-Biotron). Plants were grown in sandy-loam soil which tested at 1500 Kg/ha Ca. Plants were at the maximum temperature for 6h during the middle of the day with a photoperiod of 14 hrs. All pots received identical amounts of total N (rate: 225 Kg N ha1.). The treatments were: (1) NSN: non-split N (N application 1/2 emergence, 1/2 two wks later): (2) SPN: split-N (1/2 emergence 1/6 at 2, 5 and 8 wks later); (3) SPN+Ca: Split-N+Ca (Ca at 2, 5 and 8 wks after emergence, total Ca from CaNO3 was 113 Kg ha1). Total leaf FWT and DWT was significantly reduced in NS treatment by heat stress at 13 wks as compared to optimum conditions. However, this was not reduced in SPN and SPN+Ca. Under heat stress: (a) SPN + Ca gave the highest leaf FWT and DWT, stomatal conductance, transpiration rate, and leaflet tissue Ca content; (b) Young expanding leaflets gave higher growth rate with SPN and SPN + Ca than NSN; (c) Ca content of mature leaflet decreased progressively in both NSN and SPN but not in SPN + Ca. Our results show that application of Ca and N during heat stress can mitigate stress effects and that maintenance of a certain level of calcium in leaf tissue is important under heat stress.


Author(s):  
Luanna Corrêa Monteiro ◽  
Celso Aita ◽  
Janquieli Schirmann ◽  
Stefen Barbosa Pujo ◽  
Diego Antônio Giacomini ◽  
...  

Abstract: The objective of this work was to evaluate carbon and nitrogen mineralization in the soil after the application of composts produced in an automated composting plant, using pig slurry (PS) with and without the addition of retorted oil shale (ROS) and dicyandiamide (DCD) during composting. Laboratory studies were carried out for 180 days on two soils with contrasting characteristics: sandy-loam Typic Paludalf and clay Rhodic Hapludox, which were managed for more than 10 years under a no-tillage system. The composts were thoroughly mixed with the soils. The mineralization of the C and N from the compost was evaluated by measuring continuously CO2 emissions and periodically mineral N (NH4+ + NO3-) content in the soils, respectively. The mineralization of the C from the compost without ROS and DCD was higher in the sandy-loam soil (20.5%) than in the clay soil (13.9%). Similarly, 19.4% of the total N from the compost was mineralized in the sandy-loam soil and 10.9% in the clay soil. The presence of ROS in the compost reduced C mineralization by 54%, compared with the treatment without additives, in the sandy-loam soil and caused net N immobilization in both soils during incubation. The addition of DCD during PS composting did not affect the mineralization of the C and N from the compost in both soils. The addition of ROS during the composting of PS favors the retention of the C from the compost in the soil, especially in the sandy-loam one, but results in a net N immobilization.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 495c-495
Author(s):  
Nancy E. Roe

The use of compost as an organic source of nutrients and soil improvement may help to increase the sustainability of intensively managed vegetables. Bell pepper (Capsicum annuum L.) transplants were planted into silver-colored polyethylene mulched beds in a sandy loam soil amended with 0 or 22.4 Mg·ha–1 dairy manure compost. Preplant P was added to all beds at 78 kg·ha–1. During the season, N (as NH4NO3) was added about every 10 days. Total N rates for the season were: 0, 32, 65, or 96 kg·ha–1. Percent of N in pepper leaf tissue increased from a low of 2.7% without N to3.8% at the high N rate. Leaf P concentrations were higher in 0 N plots than in other rates. Compost resulted in higher leaf concentrations of Ca. There was an interaction of compost and N rates for percent of culls. Compost increased percentage of culls with 0 or 32 kg·ha–1 N, but decreased or did not affect cull percentage at 65, or 96 kg·ha–1 N. Compost did not affect other yield parameters measured. Marketable yields increased from 11 Mg·ha–1 with 0 N to 18 Mg·ha–1 with high N, although the regression was not significant, due to extreme variability within the field.


2008 ◽  
Vol 88 (4) ◽  
pp. 443-450 ◽  
Author(s):  
Joann K Whalen ◽  
Hicham Benslim ◽  
You Jiao ◽  
Benjamin K Sey

Compost contributes plant-available nutrients for crop production and adds partially decomposed carbon (C) to the soil organic carbon (SOC) pool. The effect of compost applications and other agricultural practices on SOC and total nitrogen (N) pools was determined in a sandy-loam Humic Gleysol at the Research Farm of McGill University, Ste-Anne-de-Bellevue, Quebec. Experimental plots with continuous silage corn (Zea mays L.) and silage corn-soybean (Glycine max L. Merr.) production were under conventional tillage (CT) or no-tillage (NT) management. Composted cattle manure was applied each spring at rates of 0, 5, 10 and 15 Mg (dry weight) ha-1 and supplemental NPK fertilizers were added to meet crop requirements. The C input from crop residues was affected by tillage, crop rotations and compost application, but differences in the SOC and total N pools were due to compost applications. After 5 yr, compost-amended plots gained 1.35 to 2.02 Mg C ha-1 yr-1 in the SOC pool and 0.18 to 0.24 Mg N ha-1 yr-1 in the total N pool, as compared with initial pool sizes when the experiment was initiated. These gains in SOC and total N were achieved with agronomic rates of compost and supplemental NPK fertilizers, selected to match the phosphorus requirements of silage corn. Such judicious use of compost has the potential to increase the SOC and total N pools in agroecosystems under annual crop production. Key words: Composted cattle manure, corn silage, mineral fertilizer, plant-available nitrogen, soil organic carbon


Sign in / Sign up

Export Citation Format

Share Document