Birthdate for the Coronation paleocean: age of initial rifting in Wopmay orogen, CanadaThis article is one of a series of papers published in this Special Issue on the theme of Geochronology in honour of Tom Krogh.

2011 ◽  
Vol 48 (2) ◽  
pp. 281-293 ◽  
Author(s):  
Paul F. Hoffman ◽  
Samuel A. Bowring ◽  
Robert Buchwaldt ◽  
Robert S. Hildebrand

The 1.9 Ga Coronation “geosyncline” to the west of Slave craton was among the first Precambrian continental margins to be identified, but its duration as a passive margin has long been uncertain. We report a new U–Pb (isotope dilution – thermal ionization mass spectrometry (ID–TIMS)) 207Pb/206Pb date of 2014.32 ± 0.89 Ma for zircons from a felsic pyroclastic rock at the top of the Vaillant basalt, which underlies the passive margin sequence (Epworth Group) at the allochthonous continental slope. A sandstone tongue within the basalt yields Paleoproterozoic (mostly synvolcanic) and Mesoarchean detrital zircon dates, of which the latter are compatible with derivation from the Slave craton. In contrast, detrital zircon grains from the Zephyr arkose in the accreted Hottah terrane have Paleoproterozoic and Neoarchean dates. The latter cluster tightly at 2576 Ma, indistinguishable from igneous zircon dates reported here from the Badlands granite, which is faulted against the Vaillant basalt and underlying Drill arkose. We interpret these data to indicate that Badlands granite belongs to the hanging wall of the collisional geosuture between Hottah terrane and the Slave margin, represented by the Drill–Vaillant rift assemblage. If 2014.32 ± 0.89 Ma dates the rift-to-drift transition and 1882.50 ± 0.95 Ma (revised from 1882 ± 4 Ma) the arrival of the passive margin at the trench bordering the Hottah terrane, the duration of the Coronation passive margin was ∼132 million years, close to the mean age of extinct Phanerozoic passive margins of ∼134 million years (see Bradley 2008).

2019 ◽  
Vol 500 (1) ◽  
pp. 477-494 ◽  
Author(s):  
S. J. Watson ◽  
J. J. Mountjoy ◽  
G. J. Crutchley

AbstractSubmarine landslides occur on continental margins globally and can have devastating consequences for marine habitats, offshore infrastructure and coastal communities due to potential tsunamigenesis. Therefore, understanding landslide magnitude and distribution is central to marine and coastal hazard planning.We present the first submarine landslide database for the eastern margin of New Zealand comprising >2200 landslides occurring in water depths from c. 300–4000 m. Landslides are more prevalent and, on average, larger on the active margin compared with the passive margin. We attribute higher concentrations of landslides on the active margin to tectonic processes including uplift and oversteepening, faulting and seamount subduction. Submarine landslide scars are concentrated around canyon systems and close to canyon thalwegs. This suggests that not only does mass wasting play a major role in canyon evolution, but also that canyon-forming processes may provide preconditioning factors for slope failure.Results of this study offer unique insights into the spatial distribution, magnitude and morphology of submarine landslides across different geological settings, providing a better understanding of the causative factors for mass wasting in New Zealand and around the world.


2021 ◽  
Vol 118 (4) ◽  
pp. e2011247118
Author(s):  
David Bercovici ◽  
Elvira Mulyukova

How subduction—the sinking of cold lithospheric plates into the mantle—is initiated is one of the key mysteries in understanding why Earth has plate tectonics. One of the favored locations for subduction triggering is at passive margins, where sea floor abuts continental margins. Such passive margin collapse is problematic because the strength of the old, cold ocean lithosphere should prohibit it from bending under its own weight and sinking into the mantle. Some means of mechanical weakening of the passive margin are therefore necessary. Spontaneous and accumulated grain damage can allow for considerable lithospheric weakening and facilitate passive margin collapse. Grain damage is enhanced where mixing between mineral phases in lithospheric rocks occurs. Such mixing is driven both by compositional gradients associated with petrological heterogeneity and by the state of stress in the lithosphere. With lateral compressive stress imposed by ridge push in an opening ocean basin, bands of mixing and weakening can develop, become vertically oriented, and occupy a large portion of lithosphere after about 100 million y. These bands lead to anisotropic viscosity in the lithosphere that is strong to lateral forcing but weak to bending and sinking, thereby greatly facilitating passive margin collapse.


2021 ◽  
Vol 9 ◽  
Author(s):  
A. Auzemery ◽  
E. Willingshofer ◽  
P. Yamato ◽  
T. Duretz ◽  
F. Beekman

We perform numerical modelling to simulate the shortening of an oceanic basin and the adjacent continental margins in order to discuss the relationship between compressional stresses acting on the lithosphere and the time dependent strength of the mid-oceanic ridges within the frame of subduction initiation. We focus on the role of stress regulating mechanisms by testing the stress–strain-rate response to convergence rate, and the thermo-tectonic age of oceanic and continental lithospheres. We find that, upon compression, subduction initiation at passive margin is favoured for thermally thin (Palaeozoic or younger) continental lithospheres (<160 km) over cratons (>180 km), and for oceanic basins younger than 60 Myr (after rifting). The results also highlight the importance of convergence rate that controls stress distribution and magnitudes in the oceanic lithosphere. Slow convergence (<0.9 cm/yr) favours strengthening of the ridge and build-up of stress at the ocean-continent transition allowing for subduction initiation at passive margins over subduction at mid-oceanic ridges. The results allow for identifying geodynamic processes that fit conditions for subduction nucleation at passive margins, which is relevant for the unique case of the Alps. We speculate that the slow Africa–Europe convergence between 130 and 85 Ma contributes to the strengthening of the mid-oceanic ridge, leading to subduction initiation at passive margin 60–70 Myr after rifting and passive margin formation.


2020 ◽  
Vol 6 (10) ◽  
pp. eaaz1048 ◽  
Author(s):  
Xin Zhou ◽  
Zhong-Hai Li ◽  
Taras V. Gerya ◽  
Robert J. Stern

Understanding the conditions for forming new subduction zones at passive continental margins is important for understanding plate tectonics and the Wilson cycle. Previous models of subduction initiation (SI) at passive margins generally ignore effects due to the lateral transition from oceanic to continental lithosphere. Here, we use three-dimensional numerical models to study the possibility of propagating convergent plate margins from preexisting intraoceanic subduction zones along passive margins [subduction propagation (SP)]. Three possible regimes are achieved: (i) subducting slab tearing along a STEP fault, (ii) lateral propagation–induced SI at passive margin, and (iii) aborted SI with slab break-off. Passive margin SP requires a significant preexisting lithospheric weakness and a strong slab pull from neighboring subduction zones. The Atlantic passive margin to the north of Lesser Antilles could experience SP if it has a notable lithospheric weakness. In contrast, the Scotia subduction zone in the Southern Atlantic will most likely not propagate laterally.


2021 ◽  
pp. M57-2021-31
Author(s):  
Harald Brekke ◽  
Halvor S. S. Bunkholt ◽  
Jan I. Faleide ◽  
Michael B. W. Fyhn

AbstractThe geology of the conjugate continental margins of the Norwegian and Greenland Seas reflects 400 Ma of post-Caledonian continental rifting, continental breakup between early Eocene and Miocene times, and subsequent passive margin conditions accompanying seafloor spreading. During Devonian-Carboniferous time, rifting and continental deposition prevailed, but from the mid-Carboniferous, rifting decreased and marine deposition commenced in the north culminating in a Late Permian open seaway as rifting resumed. The seaway became partly filled by Triassic and Lower Jurassic sediments causing mixed marine/non-marine deposition. A permanent, open seaway established by the end of the Early Jurassic and was followed by the development of an axial line of deep marine Cretaceous basins. The final, strong rift pulse of continental breakup occurred along a line oblique to the axis of these basins. The Jan Mayen Micro-Continent formed by resumed rifting in a part of the East Greenland margin in Eocene to Miocene times. This complex tectonic development is reflected in the sedimentary record in the two conjugate margins, which clearly shows their common pre-breakup geological development. The strong correlation between the two present margins is the basis for defining seven tectono-sedimentary elements (TSE) and establishing eight composite tectono-sedimentary elements (CTSE) in the region.


2019 ◽  
Vol 131 (3-4) ◽  
pp. 695-698
Author(s):  
Ed Landing ◽  
Osman Salad Hersi ◽  
Lisa Amati ◽  
Stephen R. Westrop ◽  
David A. Franzi

JOIDES drilling results provide new evidence concerning facies patterns on evolving passive margins that strengthens and extends hypotheses constructed from studies of morphology, seismic reflexion data and shallow samples on modern margins, and from field geologic studies of uplifted ancient margins. On the slopes and rise, gravity-controlled mechanisms - turbidity currents, debris flows, slides and the like - play the dominant role in sediment transport over the long term, but when clastic supplies are reduced, as for example during rapid transgressions, then oceanic sedimentation and the effects of thermohaline circulation become important. Sedimentary facies models used as the basis of unravelling tectonic complexities of some deformed margins, for example in the Mesozoic Tethys, may be too simplistic in the light of available data from modern continental margins.


2005 ◽  
Vol 42 (6) ◽  
pp. 895-934 ◽  
Author(s):  
Venessa Bennett ◽  
Valerie A Jackson ◽  
Toby Rivers ◽  
Carolyn Relf ◽  
Pat Horan ◽  
...  

U–Pb zircon crystallization ages determined by isotope dilution – thermal ionization mass spectrometry (ID–TIMS) and laser ablation microprobe – inductively coupled plasma – mass spectrometry (LAM–ICP–MS) for 13 intrusive units in the Neoarchean Snare River terrane (SRT) provide tight constraints on the timing of crust formation and orogenic evolution. Seven metaluminous plutons were emplaced over ~80 Ma from ca. 2674 to 2589 Ma, whereas six peraluminous bodies were emplaced in a ~15 Ma interval from ca. 2598 to 2585 Ma. A detrital zircon study yielded an age spectrum with peaks correlative with known magmatic events in the Slave Province, with the ca. 2635 Ma age of the youngest detrital zircon population providing a maximum estimate for the onset of sedimentation. This age contrasts with evidence for pre-2635 Ma sedimentation elsewhere in the SRT, indicating that sedimentation was protracted and diachronous. Evolution of the SRT can be subdivided into four stages: (i) 2674–2635 Ma — formation of a metaluminous protoarc in a tonalite–trondhjemite–granodiorite (TTG) – granite–greenstone tectonic regime (TR1) and coeval with early turbidite sedimentation; (ii) 2635–2608 Ma — continued turbidite sedimentation, D1/M1 juxtaposition of turbidites and protoarc lithologies prior to ~2608 Ma, and metaluminous granitoid plutonism; (iii) 2608–2597 Ma — onset of TR2, collision of Snare protoarc with Central Slave Basement Complex, D2/M2 crustal thickening and mid-crustal granulite-facies metamorphism, sychronous with metaluminous and peraluminous plutonism; and (iv) 2597–2586 Ma — orogenic collapse, D3/M3 mid-crustal uplift, granulite-facies metamorphism, and waning metaluminous and peraluminous plutonism. The distribution of igneous rocks yields an "orogenic stratigraphy" with an older upper crust underlain by a younger synorogenic mid-crust. These data can be used to provide constraints for the interpretation of the Slave – Northern Cordillera Lithospheric Evolution (SNORCLE) Lithoprobe transect.


2017 ◽  
Vol 54 (2) ◽  
pp. 203-232 ◽  
Author(s):  
Luke Ootes ◽  
Valerie A. Jackson ◽  
William J. Davis ◽  
Venessa Bennett ◽  
Leanne Smar ◽  
...  

The Wopmay orogen is a Paleoproterozoic accretionary belt preserved to the west of the Archean Slave craton, northwest Canada. Reworked Archean crystalline basement occurs in the orogen, and new bedrock mapping, U–Pb geochronology, and Sm–Nd isotopic data further substantiate a Slave craton parentage for this basement. Detrital zircon results from unconformably overlying Paleoproterozoic supracrustal rocks also support a Slave craton provenance. Rifting of the Slave margin began at ca. 2.02 Ga with a second rift phase constrained between ca. 1.92 and 1.89 Ga, resulting in thermal weakening of the Archean basement and allowing subsequent penetrative deformation during the Calderian orogeny (ca. 1.88–1.85 Ga). The boundary between the western Slave craton and the reworked Archean basement in the southern Wopmay orogen is interpreted as the rifted cratonic margin, which later acted as a rigid backstop during compressional deformation. Age-isotopic characteristics of plutonic phases track the extent and evolution of these processes that left penetratively deformed Archean basement, Paleoproterozoic cover, and plutons in the west, and “rigid” Archean Slave craton to the east. Diamond-bearing kimberlite occurs across the central and eastern parts of the Slave craton, but kimberlite (diamond bearing or not) has not been documented west of ∼114°W. It is proposed that while the crust of the western Slave craton escaped thermal weakening, the mantle did not and was moved out of the diamond stability field. The Paleoproterozoic extension–convergence cycle preserved in the Wopmay orogen provides a reasonable explanation as to why the western Slave craton appears to be diamond sterile.


Sign in / Sign up

Export Citation Format

Share Document