Genesis of cockade breccias in the tectonic evolution of the Cirotan epithermal gold system, West Java

1996 ◽  
Vol 33 (1) ◽  
pp. 93-102 ◽  
Author(s):  
A. Genna ◽  
M. Jébrak ◽  
E. Marcoux ◽  
J. P. Milési

The Pliocene Cirotan gold deposit provides an exceptional example of mineralized breccias, and in particular cockade breccias. Analysis of these breccias, approached through both field observation and image analysis on photographs, made it possible to determine their method of graded formation. The mineralized structure, as much a 25 m thick in places, is a right-lateral strike-slip fault that evolved to a normal fault at the end of the system's development. It consists of juxtaposed breccia bodies separated by major slip, or "septa," which formed at a major inflection of the host fault. The breccia bodies all show a similar internal organization. From footwall to hanging wall, one passes from a siliceous breccia with angular clasts to a thick infill of cockade breccia showing a reverse grading with small centimetre-size cockades (aspect ratios of 1:10) passing to larger (up to 1 m) more equant cockades (aspect ratios 1:3) in contact with the hanging wall. The different stages of cockade formation demonstrate genesis in an open milieu through rolling-accretion and collapse of the clasts, which show signs of mechanical attrition. The large cockades are formed of an agglomeration of several small cockades. Ore deposition occurred during a pulsating process that was active throughout the complex evolution of the structure. The final ore stage, filling the intercockade spaces, marked the end of the structure's evolution. High fluid pressures and the local structural context combined to maintain open the hydrothermal channelways, enabling cockade growth and collapse. The process of breccia formation at Cirotan was therefore exclusively of hydrothermal origin in an active tectonic context. It represents a self-organizing system within a fault zone.

2020 ◽  
Vol 12 (6) ◽  
pp. 977
Author(s):  
Luyun Xiong ◽  
Caijun Xu ◽  
Yang Liu ◽  
Yangmao Wen ◽  
Jin Fang

The acquisition of a 3D displacement field can help to understand the crustal deformation pattern of seismogenic faults and deepen the understanding of the earthquake nucleation. The data for 3D displacement field extraction are usually from GPS/interferometric synthetic aperture radar (InSAR) observations, and the direct solution method is usually adopted. We proposed an iterative least squares for virtual observation (VOILS) based on the maximum a posteriori estimation criterion of Bayesian theorem to correct the errors caused by the GPS displacement interpolation process. Firstly, in the simulation examples, both uniform and non-uniform sampling schemes for GPS observation were used to extract 3D displacement. On the basis of the experimental results of the reverse fault, the normal fault with a strike-slip component, and the strike-slip fault with a reverse component, we found that the VOILS method is better than the direct solution method in both horizontal and vertical directions. When a uniform sampling scheme was adopted, the percentages of improvement for the reverse fault ranged from 3% to 9% and up to 70%, for the normal fault with a strike-slip component ranging from 4% to 8% and up to 68%, and for the strike-slip fault with a reverse component ranging from 1% to 8% and up to 22%. After this, the VOILS method was applied to extract the 3D displacement field of the 2008 Mw 7.9 Wenchuan earthquake. In the East–West (E) direction, the maximum displacement of the hanging wall was 1.69 m and 2.15 m in the footwall. As for the North–South (N) direction, the maximum displacement of the hanging wall was 0.82 m for the southwestern, 0.95 m for the northeastern, while that of the footwall was 0.77 m. In the vertical (U) direction, the maximum uplift was 1.19 m and 0.95 m for the subsidence, which was significantly different from the direct solution method. Finally, the derived vertical displacements were also compared with the ruptures from field investigations, indicating that the VOILS method can reduce the impact of the interpolated errors on parameter estimations to some extent. The simulation experiments and the case study of the 3D displacement field for the 2008 Wenchuan earthquake suggest that the VOILS method proposed in this study is feasible and effective, and the degree of improvement in the vertical direction is particularly significant.


2020 ◽  
Vol 57 (1) ◽  
pp. 21-40
Author(s):  
Alexandra Wallenberg ◽  
Michelle Dafov ◽  
David Malone ◽  
John Craddock

A harzburgite intrusion, which is part of the trailside mafic complex) intrudes ~2900-2950 Ma gneisses in the hanging wall of the Laramide Bighorn uplift west of Buffalo, Wyoming. The harzburgite is composed of pristine orthopyroxene (bronzite), clinopyroxene, serpentine after olivine and accessory magnetite-serpentinite seams, and strike-slip striated shear zones. The harzburgite is crosscut by a hydrothermally altered wehrlite dike (N20°E, 90°, 1 meter wide) with no zircons recovered. Zircons from the harzburgite reveal two ages: 1) a younger set that has a concordia upper intercept age of 2908±6 Ma and a weighted mean age of 2909.5±6.1 Ma; and 2) an older set that has a concordia upper intercept age of 2934.1±8.9 Ma and a weighted mean age 2940.5±5.8 Ma. Anisotropy of magnetic susceptibility (AMS) was used as a proxy for magmatic intrusion and the harzburgite preserves a sub-horizontal Kmax fabric (n=18) suggesting lateral intrusion. Alternating Field (AF) demagnetization for the harzburgite yielded a paleopole of 177.7 longitude, -14.4 latitude. The AF paleopole for the wehrlite dike has a vertical (90°) inclination suggesting intrusion at high latitude. The wehrlite dike preserves a Kmax fabric (n=19) that plots along the great circle of the dike and is difficult to interpret. The harzburgite has a two-component magnetization preserved that indicates a younger Cretaceous chemical overprint that may indicate a 90° clockwise vertical axis rotation of the Clear Creek thrust hanging wall, a range-bounding east-directed thrust fault that accommodated uplift of Bighorn Mountains during the Eocene Laramide Orogeny.


2021 ◽  
Vol 124 (1) ◽  
pp. 141-162 ◽  
Author(s):  
J.F. Dewey ◽  
E.S. Kiseeva ◽  
J.A. Pearce ◽  
L.J. Robb

Abstract Space probes in our solar system have examined all bodies larger than about 400 km in diameter and shown that Earth is the only silicate planet with extant plate tectonics sensu stricto. Venus and Earth are about the same size at 12 000 km diameter, and close in density at 5 200 and 5 500 kg.m-3 respectively. Venus and Mars are stagnant lid planets; Mars may have had plate tectonics and Venus may have had alternating ca. 0.5 Ga periods of stagnant lid punctuated by short periods of plate turnover. In this paper, we contend that Earth has seen five, distinct, tectonic periods characterized by mainly different rock associations and patterns with rapid transitions between them; the Hadean to ca. 4.0 Ga, the Eo- and Palaeoarchaean to ca. 3.1 Ga, the Neoarchaean to ca. 2.5 Ga, the Proterozoic to ca. 0.8 Ga, and the Neoproterozoic and Phanerozoic. Plate tectonics sensu stricto, as we know it for present-day Earth, was operating during the Neoproterozoic and Phanerozoic, as witnessed by features such as obducted supra-subduction zone ophiolites, blueschists, jadeite, ruby, continental thin sediment sheets, continental shelf, edge, and rise assemblages, collisional sutures, and long strike-slip faults with large displacements. From rock associations and structures, nothing resembling plate tectonics operated prior to ca. 2.5 Ga. Archaean geology is almost wholly dissimilar from Proterozoic-Phanerozoic geology. Most of the Proterozoic operated in a plate tectonic milieu but, during the Archaean, Earth behaved in a non-plate tectonic way and was probably characterised by a stagnant lid with heat-loss by pluming and volcanism, together with diapiric inversion of tonalite-trondjemite-granodiorite (TTG) basement diapirs through sinking keels of greenstone supracrustals, and very minor mobilism. The Palaeoarchaean differed from the Neoarchaean in having a more blobby appearance whereas a crude linearity is typical of the Neoarchaean. The Hadean was probably a dry stagnant lid Earth with the bulk of its water delivered during the late heavy bombardment, when that thin mafic lithosphere was fragmented to sink into the asthenosphere and generate the copious TTG Ancient Grey Gneisses (AGG). During the Archaean, a stagnant unsegmented, lithospheric lid characterised Earth, although a case can be made for some form of mobilism with “block jostling”, rifting, compression and strike-slip faulting on a small scale. We conclude, following Burke and Dewey (1973), that there is no evidence for subduction on a global scale before about 2.5 Ga, although there is geochemical evidence for some form of local recycling of crustal material into the mantle during that period. After 2.5 Ga, linear/curvilinear deformation belts were developed, which “weld” cratons together and palaeomagnetism indicates that large, lateral, relative motions among continents had begun by at least 1.88 Ga. The “boring billion”, from about 1.8 to 0.8 Ga, was a period of two super-continents (Nuna, also known as Columbia, and Rodinia) characterised by substantial magmatism of intraplate type leading to the hypothesis that Earth had reverted to a single plate planet over this period; however, orogens with marginal accretionary tectonics and related magmatism and ore genesis indicate that plate tectonics was still taking place at and beyond the bounds of these supercontinents. The break-up of Rodinia heralded modern plate tectonics from about 0.8 Ga. Our conclusions are based, almost wholly, upon geological data sets, including petrology, ore geology and geochemistry, with minor input from modelling and theory.


1983 ◽  
Vol 73 (2) ◽  
pp. 419-434
Author(s):  
Jeffery S. Barker ◽  
Charles A. Langston

abstract Teleseismic P-wave first motions for the M ≧ 6 earthquakes near Mammoth Lakes, California, are inconsistent with the vertical strike-slip mechanisms determined from local and regional P-wave first motions. Combining these data sets allows three possible mechanisms: a north-striking, east-dipping strike-slip fault; a NE-striking oblique fault; and a NNW-striking normal fault. Inversion of long-period teleseismic P and SH waves for the events of 25 May 1980 (1633 UTC) and 27 May 1980 (1450 UTC) yields moment tensors with large non-double-couple components. The moment tensor for the first event may be decomposed into a major double couple with strike = 18°, dip = 61°, and rake = −15°, and a minor double couple with strike = 303°, dip = 43°, and rake = 224°. A similar decomposition for the last event yields strike = 25°, dip = 65°, rake = −6°, and strike = 312°, dip = 37°, and rake = 232°. Although the inversions were performed on only a few teleseismic body waves, the radiation patterns of the moment tensors are consistent with most of the P-wave first motion polarities at local, regional, and teleseismic distances. The stress axes inferred from the moment tensors are consistent with N65°E extension determined by geodetic measurements by Savage et al. (1981). Seismic moments computed from the moment tensors are 1.87 × 1025 dyne-cm for the 25 May 1980 (1633 UTC) event and 1.03 × 1025 dyne-cm for the 27 May 1980 (1450 UTC) event. The non-double-couple aspect of the moment tensors and the inability to obtain a convergent solution for the 25 May 1980 (1944 UTC) event may indicate that the assumptions of a point source and plane-layered structure implicit in the moment tensor inversion are not entirely valid for the Mammoth Lakes earthquakes.


Author(s):  
Reinhard Wolff ◽  
Ralf Hetzel ◽  
István Dunkl ◽  
Aneta A. Anczkiewicz

AbstractThe Brenner normal fault bounds the Tauern Window to the west and accommodated a significant portion of the orogen-parallel extension in the Eastern Alps. Here, we use zircon (U–Th)/He, apatite fission track, and apatite (U–Th)/He dating, thermokinematic modeling, and a topographic analysis to constrain the exhumation history of the western Tauern Window in the footwall of the Brenner fault. ZHe ages from an E–W profile (parallel to the slip direction of the fault) decrease westwards from ~ 11 to ~ 8 Ma and suggest a fault-slip rate of 3.9 ± 0.9 km/Myr, whereas AFT and AHe ages show no spatial trends. ZHe and AFT ages from an elevation profile indicate apparent exhumation rates of 1.1 ± 0.7 and 1.0 ± 1.3 km/Myr, respectively, whereas the AHe ages are again spatially invariant. Most of the thermochronological ages are well predicted by a thermokinematic model with a normal fault that slips at a rate of 4.2 km/Myr between ~ 19 and ~ 9 Ma and produces 35 ± 10 km of extension. The modeling reveals that the spatially invariant AHe ages are caused by heat advection due to faulting and posttectonic thermal relaxation. The enigmatic increase of K–Ar phengite and biotite ages towards the Brenner fault is caused by heat conduction from the hot footwall to the cooler hanging wall. Topographic profiles across an N–S valley in the fault footwall indicate 1000 ± 300 m of erosion after faulting ceased, which agrees with the results of our thermokinematic model. Valley incision explains why the Brenner fault is located on the western valley shoulder and not at the valley bottom. We conclude that the ability of thermokinematic models to quantify heat transfer by rock advection and conduction is crucial for interpreting cooling ages from extensional fault systems.


2021 ◽  
Author(s):  
Tihomir Marjanac ◽  
Marina Čalogović ◽  
Karlo Bermanec ◽  
Ljerka Marjanac

Abstract Strong earthquake of M6.4 stroke Petrinja and neighbouring cities of Sisak and Glina in Croatia on December 29th 2020. It was preceded by two foreshocks of M5.2 and M5.0, and followed by a series of aftershocks of various magnitudes and intensities. We have analysed first 500 earthquakes and aftershocks of > M1.0 which occurred from December 28th 2020 to January 19th 2021, their frequency, focal depths, and coseismic surface phenomena. Correlation of focal depths revealed the source of earthquakes was faulting of hanging wall of a listric normal fault with NW-SE strike and dip towards NE. Major fault seems to have caused earthquakes with only minor magnitudes. The strongest two earthquakes of M6.4 and M5.2 were initiated on synthetic fault, whereas M5.0 earthquake was initiated on an antithetic fault. Almost 50% of all seismic energy of the first 500 analysed seismic events over M1.0 was released on 1 km and 10 km deep hypocentres. Focal mechanisms of major earthquakes and strong fore- and aftershocks indicate dextral-slip mechanism, which is also in accordance with the orientation of surface cracks, land faulting and sand volcano trains. Co-seismic surface phenomena are land cracks and fissures, land faults, sand volcanoes, eruptive springing of ground water, activation of landslides, and formation of dozens of collapse sinkholes which continued to form and grow for about a month following the major earthquake.


2021 ◽  
Author(s):  
Fang Ru-Ya ◽  
Lin Cheng-Han ◽  
Lin Ming-Lang

<p>Recent earthquake events have shown that besides the strong ground motions, the coseismic faulting often caused substantial ground deformation and destructions of near-fault structures. In Taiwan, many high-rise buildings with raft foundation are close to the active fault due to the dense population. The Shanchiao Fault, which is a famous active fault, is the potentially dangerous normal fault to the capital of Taiwan (Taipei). This study aims to use coupled FDM-DEM approach for parametrically analyzing the soil-raft foundation interaction subjected to normal faulting. The coupled FDM-DEM approach includes two numerical frameworks: the DEM-based model to capture the deformation behavior of overburden soil, and the FDM-based model to investigate the responses of raft foundation. The analytical approach was first verified by three  benchmark cases and theoretical solutions. After the verification, a series of small-scale sandbox model was used to validate the performance of the coupled FDM-DEM model in simulating deformation behaviors of overburden soil and structure elements. The full-scale numerical models were then built to understand the effects of relative location between the fault tip and foundation in the normal fault-soil-raft foundation behavior. Preliminary results show that the raft foundation located above the fault tip suffered to greater displacement, rotation, and inclination due to the intense deformation of the triangular shear zone in the overburden soil. The raft foundation also exhibited distortion during faulting. Based on the results, we suggest different adaptive strategies for the raft foundation located on foot wall and hanging wall if the buildings are necessary to be constructed within the active fault zone. It is the first time that the coupled FDM-DEM approach has been carefully validated and applied to study the normal fault-soil-raft foundation problems. The novel numerical framework is expected to contribute to design aids in future practical engineering.</p><p><strong>Keywords</strong>: Coupled FDM-DEM approach; normal faulting; ground deformation; soil-foundation interaction; raft foundation.</p>


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 125 ◽  
Author(s):  
Christopher J. Barnes ◽  
Katarzyna Walczak ◽  
Emilie Janots ◽  
David Schneider ◽  
Jarosław Majka

The Vestgӧtabreen Complex exposed in the Southwestern Caledonian Basement Province of Svalbard comprises two Caledonian high-pressure units. In situ white mica 40Ar/39Ar and monazite Th-U-total Pb geochronology has resolved the timing of the tectonic evolution of the complex. Cooling of the Upper Unit during exhumation occurred at 476 ± 2 Ma, shortly after eclogite-facies metamorphism. The two units were juxtaposed at 454 ± 6 Ma. This was followed by subaerial exposure and deposition of Bullbreen Group sediments. A 430–400 Ma late Caledonian phase of thrusting associated with major sinistral shearing throughout Svalbard deformed both the complex and the overlying sediments. This phase of thrusting is prominently recorded in the Lower Unit, and is associated with a pervasive greenschist-facies metamorphic overprint of high-pressure lithologies. A c. 365–344 Ma geochronological record may represent an Ellesmerian tectonothermal overprint. Altogether, the geochronological evolution of the Vestgӧtabreen Complex, with previous petrological and structural studies, suggests that it may be a correlative to the high-pressure Tsäkkok Lens in the Scandinavian Caledonides. It is suggested that the Vestgӧtabreen Complex escaped to the periphery of the orogen along the sinistral strike-slip shear zones prior to, or during the initial stages of continental collision between Baltica and Laurentia.


Sign in / Sign up

Export Citation Format

Share Document