Tectonic evolution, prospectivity and structural studies of the hanging wall of Main Boundary Thrust along Akhurwal-Kohat transect, Khyber Pakhtunkhwa: implications for future exploration

2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Muhammad Yaseen ◽  
Sohail Wahid ◽  
Sajjad Ahmad ◽  
Gohar Rehman ◽  
Jawad Ahmad ◽  
...  
Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 125 ◽  
Author(s):  
Christopher J. Barnes ◽  
Katarzyna Walczak ◽  
Emilie Janots ◽  
David Schneider ◽  
Jarosław Majka

The Vestgӧtabreen Complex exposed in the Southwestern Caledonian Basement Province of Svalbard comprises two Caledonian high-pressure units. In situ white mica 40Ar/39Ar and monazite Th-U-total Pb geochronology has resolved the timing of the tectonic evolution of the complex. Cooling of the Upper Unit during exhumation occurred at 476 ± 2 Ma, shortly after eclogite-facies metamorphism. The two units were juxtaposed at 454 ± 6 Ma. This was followed by subaerial exposure and deposition of Bullbreen Group sediments. A 430–400 Ma late Caledonian phase of thrusting associated with major sinistral shearing throughout Svalbard deformed both the complex and the overlying sediments. This phase of thrusting is prominently recorded in the Lower Unit, and is associated with a pervasive greenschist-facies metamorphic overprint of high-pressure lithologies. A c. 365–344 Ma geochronological record may represent an Ellesmerian tectonothermal overprint. Altogether, the geochronological evolution of the Vestgӧtabreen Complex, with previous petrological and structural studies, suggests that it may be a correlative to the high-pressure Tsäkkok Lens in the Scandinavian Caledonides. It is suggested that the Vestgӧtabreen Complex escaped to the periphery of the orogen along the sinistral strike-slip shear zones prior to, or during the initial stages of continental collision between Baltica and Laurentia.


2019 ◽  
Vol 483 (1) ◽  
pp. 325-375 ◽  
Author(s):  
David J. Waters

AbstractThis review presents an objective account of metamorphic, microstructural and geochronological studies in the Greater Himalayan Sequence (GHS) and adjacent units in Nepal in the light of recent research. The importance of integrated, multidisciplinary studies is highlighted. A personal view is presented of strategies for determining pressure–temperature evolution, and of petrological processes at the micro scale, particularly in relation to departures from equilibrium and the behaviour of partially-melted rock systems. Evidence has accumulated for the existence within the GHS of a High Himalayan Discontinuity, marked by differences in timing of peak metamorphism in the hanging wall and footwall, and changes in P–T gradients and paths. Whether or not this is a single continuous horizon, it forms at each location the lower boundary to a migmatitic zone capable of ductile flow, and separates the GHS into an upper division in which channel flow may have operated in the interval 25–18 Ma, and a lower division characterized by an inverted metamorphic gradient, and by metamorphic ages that decrease downsection and are best explained by sequential accretion of footwall slices between 20 and 6 Ma. An overall model for extrusion of the GHS is still not resolved.


2012 ◽  
Vol 149 (6) ◽  
pp. 945-963 ◽  
Author(s):  
MIROSŁAW JASTRZĘBSKI

AbstractForming a northern continuation of the Moldanubian Thrust Zone, the Staré Město Belt comprises an E-verging thrust stack of three narrow lithotectonic units that exhibit variations in their respective P–T records. The upper and lower units form the respective margins of the hanging wall and footwall of the suture zone and are dominated by amphibolite grade metasedimentary successions. The middle unit is defined by an elongated body of MORB-like amphibolites that contains inserts of migmatized mica schists. Integrating both structural studies and pseudosection modelling in the MnNCKFMASH system shows that the present-day tectonic architecture of the Staré Město Belt is the result of a polyphase Variscan evolution. During a frontal, WNW–ESE-directed (in present-day coordinates) collision between the Bohemian Massif terranes and the Brunovistulian terrane, the metasedimentary rocks of the Staré Město Belt experienced tectonic burial to depths corresponding to 7–9 kbar. The continuous indentation and underthrusting of the Brunovistulian terrane led to top-to-the-ESE folding and uplift of these rocks to depths corresponding to 5.5–6.0 kbar at peak temperature. At depths corresponding to 5.5 kbar, the Staré Město Belt underwent subsequent dextral (top-to-the-NNE) shearing that was locally associated with nearly isobaric heating, possibly related to the emplacement of a Carboniferous tonalite body in the axial part of the Staré Město Belt. Subsequent tectonic compression resulted in the Variscan WNW-dipping metamorphic foliations becoming locally (N)NE- or ESE-dipping.


2020 ◽  
Vol 109 (7) ◽  
pp. 2583-2598
Author(s):  
Vincenzo Festa ◽  
Marianna Cicala ◽  
Fabrizio Tursi

Abstract In the peri-Mediterranean metamorphic belts, the tectonic evolution of the Calabria–Peloritani terrane during the dominant compressive tectonics of the Eocene represents one of the most problematic points in palinspastic restorations. A matter of particular debate is its shortening, which could have occurred during the Alpine or the Apennine subduction. In this regard, a crucial joint is provided by the kinematics of one of the most relevant shear zones such as the Curinga–Girifalco Line, cropping out in central Calabria. This shear zone juxtaposed a nearly complete Hercynian crustal section (i.e. the Sila and Serre Unit) onto the remnants of the Castagna Unit. The data in the available literature on ductile kinematics from the south-eastern branch of the Curinga–Girifalco Line indicate a downward movement of the hanging wall. In the present paper we show new, ductile kinematic data and petrographic evidence from outcrops in the north-western and south-eastern branches of the Curinga–Girifalco Line. Our results highlight the coherent kinematics of the Eocene shortening during the Alpine subduction system, followed by (late Eocene?)Oligocene to early Miocene, dominantly ductile extensional reworking, relating to the Apennines subduction system.


2002 ◽  
Vol 139 (1) ◽  
pp. 15-26 ◽  
Author(s):  
GÜROL SEYİTOĞLU ◽  
OKAN TEKELİ ◽  
İBRAHİM ÇEMEN ◽  
ŞEVKET ŞEN ◽  
VEYSEL IŞIK

The Alaşehir graben is a well-defined prominent extensional structure in western Turkey, generally trending E–W and containing four sedimentary units. At the beginning of graben formation during Early–Middle Miocene times, the first fault system was active and responsible for the accumulation of the first and second sedimentary units. In Pliocene times, a second fault system developed in the hanging wall of the first system and a third sedimentary unit was deposited. The recently active third fault system separates older graben fill and a fourth sedimentary unit. Activity on each fault system caused the rotation and uplift of previous systems, similar to the ‘flexural rotation/rolling hinge’ model, but our field observations indicate that the rotated first fault system is also active, allowing exhumation of larger amounts of rock units. This paper documents that graben formation in western Turkey is a sequential process. Its different periods are represented by three fault systems and associated sedimentation. Consequently, recent claims using age data from only the second and/or third sedimentary units to determine the timing of graben formation are misleading.


1999 ◽  
Vol 36 (12) ◽  
pp. 1989-2006 ◽  
Author(s):  
Maurice Colpron ◽  
Raymond A Price ◽  
Douglas A Archibald

40Ar/39Ar thermochronometry from the Clachnacudainn complex indicates that the thermal evolution of the complex was controlled primarily by the intrusion of granitoid plutons in mid- and Late Cretaceous times. Hornblendes from the eastern part of the complex cooled below their Ar closure temperature (ca. 500°C) shortly after intrusion of the mid-Cretaceous plutons; those from the western part of the complex have latest Cretaceous cooling dates, indicating cooling of these hornblendes after intrusion of the leucogranite plutons at ca. 71 Ma. Micas from the southern Clachnacudainn complex exhibit a pattern of progressive cooling toward lower structural levels, where Late Cretaceous and younger intrusions occur. The occurrence of Late Cretaceous - Paleocene mica cooling dates in both the hanging wall and footwall of the Standfast Creek fault refutes the hypothesis that there has been significant Tertiary extensional exhumation of the Clachnacudainn complex along the Standfast Creek fault. Furthermore, the widespread distribution of Late Cretaceous - Paleocene mica cooling ages suggests that an important volume of Late Cretaceous - early Tertiary intrusive rocks must be present in the subsurface beneath the Clachnacudainn complex.


1996 ◽  
Vol 33 (1) ◽  
pp. 93-102 ◽  
Author(s):  
A. Genna ◽  
M. Jébrak ◽  
E. Marcoux ◽  
J. P. Milési

The Pliocene Cirotan gold deposit provides an exceptional example of mineralized breccias, and in particular cockade breccias. Analysis of these breccias, approached through both field observation and image analysis on photographs, made it possible to determine their method of graded formation. The mineralized structure, as much a 25 m thick in places, is a right-lateral strike-slip fault that evolved to a normal fault at the end of the system's development. It consists of juxtaposed breccia bodies separated by major slip, or "septa," which formed at a major inflection of the host fault. The breccia bodies all show a similar internal organization. From footwall to hanging wall, one passes from a siliceous breccia with angular clasts to a thick infill of cockade breccia showing a reverse grading with small centimetre-size cockades (aspect ratios of 1:10) passing to larger (up to 1 m) more equant cockades (aspect ratios 1:3) in contact with the hanging wall. The different stages of cockade formation demonstrate genesis in an open milieu through rolling-accretion and collapse of the clasts, which show signs of mechanical attrition. The large cockades are formed of an agglomeration of several small cockades. Ore deposition occurred during a pulsating process that was active throughout the complex evolution of the structure. The final ore stage, filling the intercockade spaces, marked the end of the structure's evolution. High fluid pressures and the local structural context combined to maintain open the hydrothermal channelways, enabling cockade growth and collapse. The process of breccia formation at Cirotan was therefore exclusively of hydrothermal origin in an active tectonic context. It represents a self-organizing system within a fault zone.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
J.R. Mcintosh

The mitotic apparatus is a structure of obvious biological and medical interest, but it has proved to be a difficult cellular machine to understand. The chemical composition of the spindle is only slightly elucidated, largely because of the difficulties in preparing useful isolates of the structure. Chemical studies of the mitotic spindle have been reviewed elsewhere (Mcintosh, 1977), and will not be discussed further here. One would think that structural studies on the mitotic apparatus (MA) in situ would be straightforward, but even with this approach there is some disagreement in the results obtained with various methods and by different investigators. In this paper I will review briefly the approaches which have been used in structural studies of the MA, pointing out the strengths and problems of each approach. I will summarize the principal findings of the different methods, and identify what seem to be fruitful avenues for further work.


Author(s):  
A.M.H. Schepman ◽  
J.A.P. van der Voort ◽  
J.E. Mellema

A Scanning Transmission Electron Microscope (STEM) was coupled to a small computer. The system (see Fig. 1) has been built using a Philips EM400, equipped with a scanning attachment and a DEC PDP11/34 computer with 34K memory. The gun (Fig. 2) consists of a continuously renewed tip of radius 0.2 to 0.4 μm of a tungsten wire heated just below its melting point by a focussed laser beam (1). On-line operation procedures were developped aiming at the reduction of the amount of radiation of the specimen area of interest, while selecting the various imaging parameters and upon registration of the information content. Whereas the theoretical limiting spot size is 0.75 nm (2), routine resolution checks showed minimum distances in the order 1.2 to 1.5 nm between corresponding intensity maxima in successive scans. This value is sufficient for structural studies of regular biological material to test the performance of STEM over high resolution CTEM.


Sign in / Sign up

Export Citation Format

Share Document