The importance of microzooplankton versus phytoplankton to copepod populations during late winter and early spring in Lake Michigan

2005 ◽  
Vol 62 (10) ◽  
pp. 2371-2385 ◽  
Author(s):  
Marie H Bundy ◽  
Henry A Vanderploeg ◽  
Peter J Lavrentyev ◽  
Paul A Kovalcik

Feeding rates of the calanoid copepod Leptodiaptomus sicilis on natural assemblages of phytoplankton and microzooplankton were evaluated during late winter and early spring in Lake Michigan. Microzooplankton were the preferred food source for this copepod, and larger size fractions of phytoplankton were preferred to smaller size fractions. Ingestion rates of total chlorophyll a ranged from 2 to 14 ng·copepod–1·day–1, while ingestion rates of micro zoo plank ton biomass ranged from 0.04 to 0.15 µg C·copepod–1·day–1. In these experiments, microzooplankton carbon accounted for 22%–74% of the total carbon ingested. Clearance rates of microzooplankton carbon were positively related to the larger size fractions of chlorophyll a and to total suspended solids. Measured ingestion rates of microzooplankton and phyto plankton carbon suggest that calanoid copepod populations have the potential to control microzooplankton production in late winter and early spring, and even with an abundance of phytoplankton carbon, food availability may limit the reproduction of L. sicilis. Because microzooplankton contribute significantly to the diet of these copepods, stimulation of the microbial food web by terrigenous inputs of nutrients and carbon may be transmitted to higher trophic levels (i.e., mesozooplankton and their predators) through heterotrophic flagellates and protozoans.

1990 ◽  
Vol 47 (9) ◽  
pp. 1836-1841 ◽  
Author(s):  
Gwenyth Laird Pernie ◽  
Donald Scavia ◽  
Michael L. Pace ◽  
Hunter J. Carrick

We estimated Lake Michigan epilimnetic heterotrophic bacterial loss rates, predator size, and substrate limitation in 1986 and 1987. The bacterial growth rates were always enhanced by organic substrate additions indicating that bacterial growth is limited, to some degree, by substrate availablility. In this study we obtained loss rates and intrinsic growth rates each between 0.32 and 1.45 d−1. The grazers were predominantly picoplankton-size organisms, presumably heterotrophic flagellates. Using radiolabeled bacteria, only a small percentage (2–3%) of bacterial cells were incorporated into larger size fractions after 24 h. These results indicate that during our experiments heterotrophic bacteria were not a direct, significant, carbon source for the upper trophic levels.


Soil Research ◽  
1994 ◽  
Vol 32 (6) ◽  
pp. 1355 ◽  
Author(s):  
RB Garnsey

Earthworms have the ability to alleviate many soil degradational problems in Australia. An attempt to optimize this resource requires fundamental understanding of earthworm ecology. This study reports the seasonal changes in earthworm populations in the Midlands of Tasmania (<600 mm rainfall p.a.), and examines, for the first time in Australia, the behaviour and survival rates of aestivating earthworms. Earthworms were sampled from 14 permanent pastures in the Midlands from May 1992 to February 1994. Earthworm activity was significantly correlated with soil moisture; maximum earthworm activity in the surface soil was evident during the wetter months of winter and early spring, followed by aestivation in the surface and subsoils during the drier summer months. The two most abundant earthworm species found in the Midlands were Aporrectodea caliginosa (maximum of 174.8 m-2 or 55.06 g m-2) and A. trapezoides (86 m-2 or 52.03 g m-2), with low numbers of Octolasion cyaneum, Lumbricus rubellus and A. rosea. The phenology of A. caliginosa relating to rainfall contrasted with that of A. trapezoides in this study. A caliginosa was particularly dependent upon rainfall in the Midlands: population density, cocoon production and adult development of A. caliginosa were reduced as rainfall reduced from 600 to 425 mm p.a. In contrast, the density and biomass of A. trapezoides were unaffected by rainfall over the same range: cocoon production and adult development continued regardless of rainfall. The depth of earthworm aestivation during the summers of 1992-94 was similar in each year. Most individuals were in aestivation at a depth of 150-200 mm, regardless of species, soil moisture or texture. Smaller aestivating individuals were located nearer the soil surface, as was shown by an increase in mean mass of aestivating individuals with depth. There was a high mortality associated with summer aestivation of up to 60% for juvenile, and 63% for adult earthworms in 1993 in the Midlands. Cocoons did not survive during the summers of 1992 or 1994, but were recovered in 1993, possibly due to the influence of rainfall during late winter and early spring.


1959 ◽  
Vol 37 (4) ◽  
pp. 419-428 ◽  
Author(s):  
William S. Hoar ◽  
G. Beth Robertson

Goldfish maintained under controlled photoperiods for 6 weeks or longer were relatively more resistant to a sudden elevation in temperature when the daily photoperiods had been long (16 hours) and relatively more resistant to sudden chilling when they had been short (8 hours). The magnitude of the effect varied with the season. Thyroid activity was slightly greater in fish maintained under the shorter photoperiods. The longer photoperiods stimulated more rapid growth of ovaries during late winter and early spring. The endocrine system is considered a link in the chain of events regulating seasonal variations in resistance to sudden temperature change.


1963 ◽  
Vol 14 (6) ◽  
pp. 778 ◽  
Author(s):  
DE Harrison

During the late winter and early spring of 1960, and again to a lesser extent in 1961 and 1962, many lettuce crops in the Murray Valley area of north-western Victoria were seriously affected by a disease characterized by blackening, dry rotting, and collapse of the affected leaves. The incidence of disease varied from about 10% up to practically complete destruction of some plantings. A yellow bacterium was consistently isolated from affected plants and proved to be pathogenic to lettuce. Laboratory studies have shown that the organism agrees closely with the recorded description of Xanthomonas vitians (Brown) Dowson, which has not, apparently, been previously studied in Australia.


2014 ◽  
Vol 104 (5) ◽  
pp. 576-585 ◽  
Author(s):  
C. Monzo ◽  
J.A. Qureshi ◽  
P.A. Stansly

AbstractThe Asian citrus psyllid (ACP), Diaphorina citri Kuwayama is considered a key citrus pest due to its role as vector of ‘huanglongbing’ (HLB) or citrus greening, probably the most economically damaging disease of citrus. Insecticidal control of the vector is still considered a cornerstone of HLB management to prevent infection and to reduce reinoculation of infected trees. The severity of HLB has driven implementation of intensive insecticide programs against ACP with unknown side effects on beneficial arthropod fauna in citrus agroecosystems. We evaluated effects of calendar sprays directed against this pest on natural enemy assemblages and used exclusion to estimate mortality they imposed on ACP populations in citrus groves. Predator exclusion techniques were used on nascent colonies of D. citri in replicated large untreated and sprayed plots of citrus during the four major flushing periods over 2 years. Population of spiders, arboreal ants and ladybeetles were independently assessed. Monthly sprays of recommended insecticides for control of ACP, adversely affected natural enemy populations resulting in reduced predation on ACP immature stages, especially during the critical late winter/early spring flush. Consequently, projected growth rates of the ACP population were greatest where natural enemies had been adversely affected by insecticides. Whereas, this result does not obviate the need for insecticidal control of ACP, it does indicate that even a selective regimen of sprays can impose as yet undetermined costs in terms of reduced biological control of this and probably other citrus pests.


1988 ◽  
Vol 45 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Hunter J. Carrick ◽  
Rex L. Lowe

The possibility that benthic algae in the nearshore area of Lake Michigan might be growth limited by Si was tested using nutrient-releasing substrata. Nutrient treatments were Si, N + P, Si + N + P, and controls (CONT) and were sampled after 7, 14, and 31 d of exposure. Addition of Si alone had little stimulatory effect on algal biomass, while enrichment with Si + N + P led to the greatest increase in chlorophyll a, particulate Si, total biovolume, and diatom biovolume after 14 d of incubation (P < 0.0001). By day 31, communities on CONT and Si substrata exhibited little change in biomass and remained dominated by diatoms (98% of total biovolume), while algal biomass on both N + P and Si + N + P substrata increased more than eightfold (P < 0.0001) and consisted mainly of Stigeoclonium tenue (Chlorophyta) and Schizothrix calcicolas (Cyanophyta). These results indicate that benthic diatoms in Lake Michigan are not currently limited by Si, but may become Si limited following enrichment with N + P.


2021 ◽  
Author(s):  
Samuel Monnier ◽  
Michel Thibaudon ◽  
Jean-Pierre Besancenot ◽  
Charlotte Sindt ◽  
Gilles Oliver

&lt;p&gt;Knowledge:&lt;/p&gt;&lt;p&gt;Rising CO2 levels and climate change may be resulting in some shift in the geographical range of certain plant species, as well as in increased rate of photosynthesis. Many plants respond accordingly with increased growth and reproduction and possibly greater pollen yields, that could affect allergic diseases among other things.&lt;/p&gt;&lt;p&gt;The aim of this study is the evolution of aerobiological measurements in France for 25-30 years. This allows to follow the main phenological parameters in connection with the pollination and the ensuing allergy risk.&lt;/p&gt;&lt;p&gt;Material and method:&lt;/p&gt;&lt;p&gt;The RNSA (French Aerobiology Network) has pollen background-traps located in more than 60 towns throughout France. These traps are volumetric Hirst models making it possible to obtain impacted strips for microscopic analysis by trained operators. The main taxa studied here are birch, grasses and ragweed for a long period of more than 25 years over some cities of France.&lt;/p&gt;&lt;p&gt;Results:&lt;/p&gt;&lt;p&gt;Concerning birch but also other catkins or buds&amp;#8217; trees pollinating in late winter or spring, it can be seen an overall advance of the pollen season start date until 2004 and then a progressive delay, the current date being nearly the same as it was 20 years ago, and an increasing trend in the quantities of pollen emitted.&lt;/p&gt;&lt;p&gt;For grasses and ragweed, we only found a few minor changes in the start date but a longer duration of the pollen season.&lt;/p&gt;&lt;p&gt;Discussion:&lt;/p&gt;&lt;p&gt;As regards the trees, the start date of the new production of catkins or buds is never the 1&lt;sup&gt;st&lt;/sup&gt; of January but depends on the species. For example, it is early July for birch. For breaking dormancy, flowering, and pollinating, the trees and other perennial species need a period of accumulation of cold degrees (Chilling) and later an accumulation of warm degrees (Forcing). With climate change these periods may be shorter or longer depending of the autumn and winter temperature. Therefore, a change in the annual temperature may have a direct effect on the vegetal physiology and hence on pollen release. It may also explain why the quantities of pollen produced are increasing.&lt;/p&gt;&lt;p&gt;The Poaceae reserve, from one place to another and without any spatial structuring, very contrasted patterns which make it impossible to identify a general tendency. This is probably due to the great diversity of taxa grouped under the generic term Poaceae, which are clearly not equally sensitive to climate change.&lt;/p&gt;&lt;p&gt;Conclusion:&lt;/p&gt;&lt;p&gt;Trees with allergenic pollen blowing late winter or early spring pollinate since 2004 later and produce amounts of pollen constantly increasing. Grasses and ragweed have longer periods of pollination with either slightly higher or most often lower pollen production.&lt;/p&gt;


1990 ◽  
Vol 68 (7) ◽  
pp. 1597-1601 ◽  
Author(s):  
John S. Taylor ◽  
Munjeet K. Bhalla ◽  
J. Mason Robertson ◽  
Lu J. Piening

During overwintering in a northern climate, winter wheat goes through a hardening process, followed by dehardening in late winter – early spring. This sequence of events may be partially controlled by changes in endogenous hormone levels. Crowns and leaf tissue from field grown winter wheat (Triticum aestivum L. cv. Norstar) seeded at the beginning of September were collected and freeze-dried at monthly intervals during the winters of 1985–1986 and 1986–1987. Material was also sampled and freeze-dried from seedlings grown in a growth chamber under hardening conditions (21 °C for 2 weeks plus 3 °C for 6 weeks) or nonhardening conditions (3 weeks at 21 °C). The tissues were analysed for cytokinins and abscisic acid. Cytokinin levels, measured with the soybean hypocotyl section assay, declined from October onwards and then rose to a peak in late winter (January and February, winter 1986–1987; February and March, winter 1985–1986), subsequently declining again. Abscisic acid, quantitated as the methyl ester by gas chromatography with an electron capture detector, increased in level from October to December, then decreased to a relatively low level between January and March. Hardened seedlings from the growth chamber contained significantly higher abscisic acid levels and significantly lower cytokinin levels than did the nonhardened seedlings. Key words: abscisic acid, cytokinins, hardening, Triticum aestivum, winter wheat.


2016 ◽  
Vol 16 (9) ◽  
pp. 5513-5529 ◽  
Author(s):  
Vidmantas Ulevicius ◽  
Steigvilė Byčenkienė ◽  
Carlo Bozzetti ◽  
Athanasia Vlachou ◽  
Kristina Plauškaitė ◽  
...  

Abstract. In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m−3 and black carbon (BC) up to 17 µg m−3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26–44 % and 13–23 % to the total carbon (TC), respectively. 5–8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4–13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13–24 and 7–13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.


Sign in / Sign up

Export Citation Format

Share Document