Blowin’ in the wind: reciprocal airborne carbon fluxes between lakes and land This paper is based on the J.C. Stevenson Memorial Lecture presented at the Canadian Conference for Fisheries Research (CCFFR) in Ottawa, Ontario, 9–11 January 2009.

2011 ◽  
Vol 68 (1) ◽  
pp. 170-182 ◽  
Author(s):  
M. Jake Vander Zanden ◽  
Claudio Gratton

Ecologists are increasingly interested in how disjunct habitats are connected through the cross-habitat movement of matter, prey, nutrients, and detritus and the implications for recipient systems. The study of lake ecosystems has been dominated by the study of pelagic (open-water) production and processes, though there is growing awareness of the role of terrestrial inputs and benthic trophic pathways. Here, we review the phenomena of airborne fluxes to and from lakes. We assemble published data on terrestrial particulate organic carbon (TPOC) deposition to lakes, insect production, and insect emergence and use these data to simulate how airborne lake-to-land and land-to-lake carbon flux is expected to scale with ecosystem size, while taking into account among-lake variability in emergence and TPOC deposition. Emergent insect flux to land increases as a function of lake size, while TPOC deposition to lakes decreases as a function of lake size. TPOC deposition exceeds insect emergence in small lakes, while in large lakes, insect emergence exceeds TPOC deposition. We present a general framework for considering directional fluxes across habitat boundaries. Furthermore, our results highlight the overarching role of ecosystem geometry in determining insect emergence, airborne carbon deposition, and net carbon flux between adjacent ecosystems.

2005 ◽  
Vol 6 (3) ◽  
pp. 291-305 ◽  
Author(s):  
Wayne R. Rouse ◽  
Claire J. Oswald ◽  
Jacqueline Binyamin ◽  
Christopher Spence ◽  
William M. Schertzer ◽  
...  

Abstract There are many lakes of widely varying morphometry in northern latitudes. For this study region, in the central Mackenzie River valley of western Canada, lakes make up 37% of the landscape. The nonlake components of the landscape are divided into uplands (55%) and wetlands (8%). With such abundance, lakes are important features that can influence the regional climate. This paper examines the role of lakes in the regional surface energy and water balance and evaluates the links to the frequency–size distribution of lakes. The primary purpose is to examine how the surface energy balance may influence regional climate and weather. Lakes are characterized by both the magnitude and temporal behavior of their surface energy balances during the ice-free period. The impacts of combinations of various-size lakes and land–lake distributions on regional energy balances and evaporation cycles are presented. Net radiation is substantially greater over all water-dominated surfaces compared with uplands. The seasonal heat storage increases with lake size. Medium and large lakes are slow to warm in summer. Their large cumulative heat storage, near summer’s end, fuels large convective heat fluxes in fall and early winter. The evaporation season for upland, wetland, and small, medium, and large lakes lasts for 19, 21, 22, 24, and 30 weeks, respectively. The regional effects of combinations of surface types are derived. The region is initially treated as comprising uplands only. The influences of wetland, small, medium, and large lakes are added sequentially, to build up to the energy budget of the actual landscape. The addition of lakes increases the regional net radiation, the maximum regional subsurface heat storage, and evaporation substantially. Evaporation decreases slightly in the first half of the season but experiences a large enhancement in the second half. The sensible heat flux is reduced substantially in the first half of the season, but changes little in the second half. For energy budget modeling the representation of lake size is important. Net radiation is fairly independent of size. An equal area of medium and large lakes, compared with small lakes, yields substantially larger latent heat fluxes and lesser sensible heat fluxes. Lake size also creates large differences in regional flux magnitudes, especially in the spring and fall periods.


1992 ◽  
Vol 57 (10) ◽  
pp. 2012-2020
Author(s):  
Vladimír Hejtmánek

The role of geometric factor in the course of skeletal reactions (isomerization, hydrogenolysis) of 2-methylpentane on stepped (119), (557) and reconstructed R(557) surfaces of single crystals of platinum was evaluated with computer designed models. These calculations were compared with reported experimental data. It was found by analysis of geometric conditions that there are accessible active ensembles on double step of the reconstructed R(557) surface. In addition, these active sites are unsaturated in their coordination sphere and thus catalytically effective. This finding is consistent with published data, confirming higher catalytic activity of this surface. The various pathways of Bond Shift isomerization mechanism of 2-methylpentane from the point of view of steric demands of surface intermediates on differently located ensembles are discussed, too.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 639
Author(s):  
Domenico Ribatti ◽  
Francesco Pezzella

Angiogenesis is a crucial event in the physiological processes of embryogenesis and wound healing. During malignant transformation, dysregulation of angiogenesis leads to the formation of a vascular network of tumor-associated capillaries promoting survival and proliferation of the tumor cells. Starting with the hypothesis formulated by Judah Folkman that tumor growth is angiogenesis-dependent, this area of research has a solid scientific foundation and inhibition of angiogenesis is a major area of therapeutic development for the treatment of cancer. Over this period numerous authors published data of vascularization of tumors, which attributed the cause of neo-vascularization to various factors including inflammation, release of angiogenic cytokines, vasodilatation, and increased tumor metabolism. More recently, it has been demonstrated that tumor vasculature is not necessarily derived by endothelial cell proliferation and sprouting of new capillaries, but alternative vascularization mechanisms have been described, namely vascular co-option and vasculogenic mimicry. In this article, we have analyzed the mechanisms involved in tumor vascularization in association with classical angiogenesis, including post-natal vasculogenesis, intussusceptive microvascular growth, vascular co-option, and vasculogenic mimicry. We have also discussed the role of these alternative mechanism in resistance to anti-angiogenic therapy and potential therapeutic approaches to overcome resistance.


Quaternary ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 14
Author(s):  
Zhengchen Li ◽  
Xianyan Wang ◽  
Jef Vandenberghe ◽  
Huayu Lu

The Wufo Basin at the margin of the northeastern Tibet Plateau connects the upstream reaches of the Yellow River with the lowland catchment downstream, and the fluvial terrace sequence in this basin provides crucial clues to understand the evolution history of the Yellow River drainage system in relation to the uplift and outgrowth of the Tibetan Plateau. Using field survey and analysis of Digital Elevation Model/Google Earth imagery, we found at least eight Yellow River terraces in this area. The overlying loess of the highest terrace was dated at 1.2 Ma based on paleomagnetic stratigraphy (two normal and two reversal polarities) and the loess-paleosol sequence (12 loess-paleosol cycles). This terrace shows the connections of drainage parts in and outside the Tibetan Plateau through its NE margin. In addition, we review the previously published data on the Yellow River terraces and ancient large lakes in the basins. Based on our new data and previous researches, we conclude that the modern Yellow River, with headwaters in the Tibet Plateau and debouching in the Bohai Sea, should date from at least 1.2 Ma. Ancient large lakes (such as the Hetao and Sanmen Lakes) developed as exorheic systems and flowed through the modern Yellow River at that time.


2021 ◽  
pp. 152692482110028
Author(s):  
Alberto Ferrarese ◽  
Patrizia Burra

Liver transplantation is considered an effective therapeutic option for Wilson’s disease (WD) patients with hepatic phenotype, since it removes the inherited defects of copper metabolism, and is associated with excellent graft and patient outcomes. The role of liver transplantation in WD patients with mixed hepatic and neuropsychiatric phenotype has remained controversial over time, mainly because of high post-operative complications, reduced survival and a variable, unpredictable rate of neurological improvement. This article critically discusses the recently published data in this field, focussing in more detail on isolated neuropsychiatric phenotype as a potential indication for liver transplantation in WD patients.


2021 ◽  
Vol 22 (14) ◽  
pp. 7436
Author(s):  
Helga Simon-Molas ◽  
Xavier Vallvé-Martínez ◽  
Irene Caldera-Quevedo ◽  
Pere Fontova ◽  
Claudia Arnedo-Pac ◽  
...  

The glycolytic modulator TP53-Inducible Glycolysis and Apoptosis Regulator (TIGAR) is overexpressed in several types of cancer and has a role in metabolic rewiring during tumor development. However, little is known about the role of this enzyme in proliferative tissues under physiological conditions. In the current work, we analysed the role of TIGAR in primary human lymphocytes stimulated with the mitotic agent Concanavalin A (ConA). We found that TIGAR expression was induced in stimulated lymphocytes through the PI3K/AKT pathway, since Akti-1/2 and LY294002 inhibitors prevented the upregulation of TIGAR in response to ConA. In addition, suppression of TIGAR expression by siRNA decreased the levels of the proliferative marker PCNA and increased cellular ROS levels. In this model, TIGAR was found to support the activity of glucose 6-phosphate dehydrogenase (G6PDH), the first enzyme of the pentose phosphate pathway (PPP), since the inhibition of TIGAR reduced G6PDH activity and increased autophagy. In conclusion, we demonstrate here that TIGAR is upregulated in stimulated human lymphocytes through the PI3K/AKT signaling pathway, which contributes to the redirection of the carbon flux to the PPP.


Author(s):  
Maria Cristina Budani ◽  
Gian Mario Tiboni

Nitric oxide (NO) is formed during the oxidation of L-arginine to L-citrulline by the action of multiple isoenzymes of NO synthase (NOS): neuronal NOS (nNOS), endotelial NOS (eNOS), and inducible NOS (iNOS). NO plays a relevant role in the vascular endothelium, in central and peripheral neurons, and in immunity and inflammatory systems. In addition, several authors showed a consistent contribution of NO to different aspects of the reproductive physiology. The aim of the present review is to analyse the published data on the role of NO within the ovary. It has been demonstrated that the multiple isoenzymes of NOS are expressed and localized in the ovary of different species. More to the point, a consistent role was ascribed to NO in the processes of steroidogenesis, folliculogenesis, and oocyte meiotic maturation in in vitro and in vivo studies using animal models. Unfortunately, there are few nitric oxide data for humans; there are preliminary data on the implication of nitric oxide for oocyte/embryo quality and in-vitro fertilization/embryo transfer (IVF/ET) parameters. NO plays a remarkable role in the ovary, but more investigation is needed, in particular in the context of human ovarian physiology.


2021 ◽  
Vol 10 (5) ◽  
pp. 1147
Author(s):  
Amit Akirov ◽  
Hiba Masri-Iraqi ◽  
Idit Dotan ◽  
Ilan Shimon

Background: The diagnosis of acromegaly still poses a clinical challenge, and prolonged diagnostic delay is common. The most important assays for the biochemical diagnosis and management of acromegaly are growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Objective: Discuss the role of IGF-1, basal serum GH, and nadir GH after oral glucose tolerance test (OGTT) for the diagnosis, management, and treatment of patients with acromegaly. Methods: We performed a narrative review of the published data on the biochemical diagnosis and monitoring of acromegaly. An English-language search for relevant studies was conducted on PubMed from inception to 1 January 2021. The reference lists of relevant studies were also reviewed. Results: Serum IGF-1 levels, basal GH values, and nadir GH after OGTT play a major role in the diagnosis, management, and treatment of patients with acromegaly. Measurement of IGF-1 levels is the key factor in the diagnosis and monitoring of acromegaly, but basal and nadir GH following OGTT are also important. However, several factors may significantly influence the concentrations of these hormones, including assay methods, physiologic and pathologic factors. In some cases, discordant GH and IGF-1 levels may be challenging and usually requires additional data and monitoring. Conclusion: New GH and IGF-1 standards are much more precise and provide more accurate tools to diagnose and monitor patients with acromegaly. However, all these biochemical tools have their limitations, and these should be taken under consideration, along with the history, clinical features and imaging studies, when assessing patients for acromegaly.


2001 ◽  
Vol 85 (04) ◽  
pp. 626-633 ◽  
Author(s):  
Augusto Di Castelnuovo ◽  
Giovanni de Gaetano ◽  
Maria Benedetta Donati ◽  
Licia Iacoviello

SummaryMembrane glycoprotein IIb/IIIa plays a major role in platelet function. The gene encoding the glycoprotein IIIa shows a common polymorphism PlA1/PlA2 that was variably associated with vascular disease. To clarify the role of PlA1/PlA2 polymorphism in coronary risk, a meta-analysis of published data was conducted. Studies were identified both by MEDLINE searches, and hand searching of journals and abstract books.A total of 34 studies for coronary artery disease (CAD), and 6 for restenosis after revascularization were identified, for a total of 9,095 cases and 12,508 controls. In CAD, the overall odds ratio for carriers of the PlA2 allele was 1.10 (95% CI: 1.03 to 1.18), and it was 1.21 (95% CI: 1.05 to 1.38) in subjects younger than 60. Overall odds ratio was 1.31 (95% CI: 1.10 to 1.56) after revascularization procedures.The association of PlA2 status with overall cardiovascular disease in the general population is significant but weak; higher risk has been identified in less heterogeneous subgroups as in the younger cohorts and in the restenosis subset with stents.


Sign in / Sign up

Export Citation Format

Share Document