The consequences of short-term cortisol elevation on individual physiology and growth rate in wild largemouth bass (Micropterus salmoides)

2011 ◽  
Vol 68 (4) ◽  
pp. 693-705 ◽  
Author(s):  
Constance M. O’Connor ◽  
Kathleen M. Gilmour ◽  
Robert Arlinghaus ◽  
Shuichi Matsumura ◽  
Cory D. Suski ◽  
...  

In this study, we explored the growth, survival, and potential population-level effects of short-term experimentally induced stress in largemouth bass ( Micropterus salmoides ). Cortisol implants [50 mg·(kg body mass)–1] were used to increase circulating stress hormones in a group of wild fish in a research lake for ∼6 d in June 2007. Through mark-and-recapture, we compared survival, growth, and plasma biochemistry of cortisol-treated, sham-treated, and control fish at liberty until October 2007. Cortisol-treated fish displayed persistent growth rate depression compared with other groups. However, neither plasma biochemistry nor mortality rates differed among treatments. In a complementary study, we found that the standard metabolic rates (SMR) of cortisol-treated fish were higher than control fish ∼56 h following treatment. Bioenergetics modelling revealed that a transient elevation in SMR alone was insufficient to explain the observed growth depression. Finally, we constructed a simple population model to explore the potential consequences of growth depression. We found that a 10% reduction in population growth rate is conceivable when 39% of the population experiences a stress causing the growth rate depression documented in this study. Our study is novel in highlighting that individual and potentially population-level growth depression can result from a single stress event of short duration.

2012 ◽  
Vol 33 (3-4) ◽  
pp. 365-372 ◽  
Author(s):  
Thomas Fauvel ◽  
François Brischoux ◽  
Marine Jeanne Briand ◽  
Xavier Bonnet

Long term population monitoring is essential to ecological studies; however, field procedures may disturb individuals. Assessing this topic is important in worldwide declining taxa such as reptiles. Previous studies focussed on animal welfare issues and examined short-term effects (e.g. increase of stress hormones due to handling). Long-term effects with possible consequences at the population level remain poorly investigated. In the present study, we evaluated the effects of widely used field procedures (e.g. handling, marking, forced regurgitation) both on short-term (hormonal stress response) and on long-term (changes in body condition, survival) scales in two intensively monitored populations of sea kraits (Laticauda spp.) in New Caledonia. Focusing on the most intensively monitored sites, from 2002 to 2012, we gathered approximately 11 200 captures/recaptures on 4500 individuals. Each snake was individually marked (scale clipping + branding) and subjected to various measurements (e.g. body size, head morphology, palpation). In addition, a subsample of more than 500 snakes was forced to regurgitate their prey for dietary analyses. Handling caused a significant stress hormonal response, however we found no detrimental long-term effect on body condition. Forced regurgitation did not cause any significant effect on both body condition one year later and survival. These results suggest that the strong short-term stress provoked by field procedures did not translate into negative effects on the population. Although similar analyses are required to test the validity of our conclusions in other species, our results suggest distinguishing welfare and population issues to evaluate the potential impact of population surveys.


1974 ◽  
Vol 52 (4) ◽  
pp. 447-456 ◽  
Author(s):  
A. J. Niimi ◽  
F. W. H. Beamish

Changes in growth and proximate body composition of largemouth bass (Micropterus salmoides) were examined for fish of 8–150 g, between 18 and 30C. For most weights, growth of fish (grams/day) was highest at 25C, and lowest in fish at 18C. This was attributable in part to a higher satiation (maximum) feeding level at 25C. For a fixed level of feeding, growth rate (percentage wet weight/day) was highest for fish held at 18C.Lipid content (percentage wet weight) increased with feeding level and was highest at 18C, Moisture content varied inversely with lipid. Protein and ash content did not vary appreciably with temperature, body weight, or feeding level.Maintenance requirement of bass, expressed as grams/day, was about twice that lost during food deprivation, but only slightly different when expressed as kilocalories/day.Energy requirements for nonfecal losses were estimated as 10% of intake energy at all feeding levels. Standard metabolism accounted for 50% of intake energy near maintenance, but only 10% at the satiation feeding level. Growth requirements increased From zero at maintenance to 40% of intake energy at satiation feeding.


2019 ◽  
Vol 15 (11) ◽  
pp. 20190626 ◽  
Author(s):  
David C. Fryxell ◽  
Zachary T. Wood ◽  
Rebecca Robinson ◽  
Michael T. Kinnison ◽  
Eric P. Palkovacs

Eco-evolutionary feedbacks may determine the outcome of predator–prey interactions in nature, but little work has been done to quantify the feedback effect of short-term prey adaptation on predator performance. We tested the effects of prey availability and recent (less than 100 years) prey adaptation on the feeding and growth rate of largemouth bass ( Micropterus salmoides ), foraging on western mosquitofish ( Gambusia affinis ). Field surveys showed higher densities and larger average body sizes of mosquitofish in recently introduced populations without bass. Over a six-week mesocosm experiment, bass were presented with either a high or low availability of mosquitofish prey from recently established populations either naive or experienced with bass. Naive mosquitofish were larger, less cryptic and more vulnerable to bass predation compared to their experienced counterparts. Bass consumed more naive prey, grew more quickly with naive prey, and grew more quickly per unit biomass of naive prey consumed. The effect of mosquitofish history with the bass on bass growth was similar in magnitude to the effect of mosquitofish availability. In showing that recently derived predation-related prey phenotypes strongly affect predator performance, this study supports the presence of reciprocal predator–prey trait feedbacks in nature.


<em>Abstract.</em>—Largemouth Bass <em>Micropterus salmoides</em> is typically thought of as a freshwater species, but populations occur in oligohaline portions of estuaries throughout the U.S. Atlantic and Gulf of Mexico coasts, often with popular fisheries. These coastal populations must deal with the physiological stresses associated with salinity variation and may be isolated from inland freshwater populations, increasing the potential for differentiation. To understand factors important to the ecology and management of these coastal populations, we quantified individual- and population-level parameters for Largemouth Bass across a natural salinity gradient in the Mobile-Tensaw River delta in southwestern Alabama during 2002–2009 (including population demographics, feeding ecology, movement, recruitment, and bioenergetics processes). Combining traditional mark–recapture and telemetry techniques with otolith microchemical analyses, we demonstrated that Largemouth Bass of all ages moved very little, even in response to increasing salinity (up to 15‰) in downstream areas. Large individuals were rare in our sampling across both fresh and brackish habitats (only 7 out of 9,530 individuals were >2.27 kg), and fish body condition increased downstream with increasing marine influence. Growth responses for fish across the estuary were more complex, varying with both fish age and salinity. Faster growth was observed in the brackish, downstream areas for fish ≤age 2, while growth of older fish was faster in freshwater upstream sites. Using bioenergetics modeling, we demonstrated that a complex combination of spatial variation in water temperature, prey energetic content, and metabolic cost of salinity was responsible for age-specific spatial variation in growth. Preliminary genetic analysis suggests that these coastal Largemouth Bass may differ genetically from inland fish. Coastal Largemouth Bass populations face a number of potential conservation concerns, and their management will require different approaches compared to their inland counterparts, including different goals and expectations, likely even requiring consideration as unique stocks.


2004 ◽  
Vol 61 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Ana Maria Barretto de Menezes Sampaio de Oliveira ◽  
José Eurico Possebon Cyrino

Adding attractants can improve acceptability of artificial diets by carnivorous fish fry and fingerlings, increasing intake of unpalatable feeds and improving growth rate, while reducing feeding time and feeding wastes. This study aimed to evaluate the effects of levels of inclusion of different attractants in plant protein-based diets on the performance of largemouth bass Micropterus salmoides. Nine hundred juvenile largemouth bass (26.54 ± 1.53 g) conditioned to accept dry, artificial feed were stocked in 60, 90-L polyethylene tanks (15 fish per group) in a completely randomized design trial (n=3). Fish were fed two daily meals ad libitum at 7h00 and 17h00, for 13 days, with a diet (100% plant protein source) containing either soluble fish protein - SFP (0.5, 1.0, 1.5, 2.0, 2.5, and 3.0%); FisharonTM - FA (0.02, 0.04, 0.06, 0.08, 0.10, 0.12%); fish silage - FS (1.0, 2.0, 3.0, 4.0, 5.0, and 6.0%); a positive control diet - pCD (10% fish meal) and a negative control diet - nCD (basal diet without attractants). DL-methionine (98%) and L-lysine (80%) were added automatically by the formulation software to adjust available amino-acid profile of diets. Recorded performance data were: final weight, feed intake, weight gain and feed conversion ratio. Fish fed diet FA0.02 presented the best growth rate, best weight gain and best feed conversion ratio. Fish fed diets containing FS as attractant presented the poorest performance.


Author(s):  
Andrea L Sylvia ◽  
Stephen J. Dinsmore ◽  
Michael J Weber

Popularity of bass Micropterus spp. catch and release and tournament angling during the past decade has resulted in increased potential for these activities to induce population level effects. Understanding capture rates and mortality sources relative to total population mortality is essential to focus of management. We conducted monthly electrofishing, solicited non-tournament angler tag returns, and censused largemouth bass Micropterus salmoides tournaments at Brushy Creek Lake, IA, USA from April 2015 to June 2018. We used a multistate mark-recapture model to evaluate the effects of air temperature, water temperature, tournament bass per angler, and tournament initial mortality on non-tournament and tournament angler capture probability and natural, non-tournament angling, and initial and delayed tournament mortality. Average total annual mortality was 0.66 with natural mortality representing the largest mortality source (0.57) followed by delayed tournament mortality (0.06), non-tournament angling mortality (0.02), and initial tournament mortality (0.006). Our results reveal both non-tournament and tournament angling mortality are low compared to natural mortality in some lakes. Therefore, cumulative angling mortality likely has minimal population level effects on some bass populations.


1998 ◽  
Vol 55 (12) ◽  
pp. 2588-2600 ◽  
Author(s):  
David M Post ◽  
James F Kitchell ◽  
James R Hodgson

Using 12 years of data, we evaluated the mechanisms controlling largemouth bass, Micropterus salmoides, recruitment in a lake near the northern extent of the largemouth bass range. We found that complex interactions among adult demographics, size-selective predation, and overwinter mortality regulate the number of largemouth bass surviving the first year of life. The largest recruitment events required at least a moderate number of adults, but a large number of adults was not sufficient to produce a large cohort of largemouth bass. Predation was controlled by the number of both adult and juvenile bass and was not strongly correlated with reproductive output. Overwinter mortality was size dependent, strongly affecting bass entering the winter at <50-60 mm in length, and likely the result of starvation. Predation and overwinter mortality interacted with spawning date and growth rate to produce variable but predictable patterns of first year survival. At high adult and juvenile densities, predation regulates first year survival. At low adult and juvenile densities, first year survival was regulated by adult demographics and interactions among spawning date, growth rates, and overwinter mortality. Although we can forecast coarse patterns of cohort survival, the survival of individual fish was more difficult to predict because length and age were not highly correlated.


Sign in / Sign up

Export Citation Format

Share Document