Influence of Nutrient Enrichment and Light Availability on the Abundance of Aquatic Macrophytes in Florida Streams

1988 ◽  
Vol 45 (8) ◽  
pp. 1467-1472 ◽  
Author(s):  
Daniel E. Canfield Jr. ◽  
Mark V. Hoyer

A survey of 17 Florida streams was conducted between October 1984 and August 1986 to determine if the abundance of aquatic macrophytes was related to nutrient enrichment. Macrophyte standing crops were not correlated with in-stream total phosphorus or total nitrogen concentrations. Aquatic macrophytes contained less than 2% of the annual nutrient discharge in nearly all streams. Nutrients are, therefore, not considered to be the primary factor regulating the abundance of aquatic macrophytes in most Florida streams. Shading by riparian vegetation seems to be the dominant factor controlling the location and abundance of aquatic macrophytes. Statistical analyses indicated that the potential average and maximum standing crop of aquatic macrophytes in the sampled streams could be estimated by the equations[Formula: see text]where SCavg and SCmax are the average and maximum standing crop of aquatic macrophytes (kilograms fresh weight per square metre), respectively, and %C is the percent canopy coverage by riparian vegetation.

Ecology ◽  
1972 ◽  
Vol 53 (3) ◽  
pp. 484-488 ◽  
Author(s):  
J. M. Polisini ◽  
Claude E. Boyd

1985 ◽  
Vol 17 (11-12) ◽  
pp. 315-316
Author(s):  
Mitsumasa Okada ◽  
Ryuichi Sudo

Abstract–Phosphorus removal by biological means in continuous-flow aerobic/ anaerobic activated sludge processes is now in a stage of full-scale operations. The similar aerobic/anaerobic treatment is also found in biological processes for nitrogen removal by nitrification followed by denitrification. These processes are successfully applied not only to continuous-flow system but also to sequencing batch reactor (SBR) activated sludge processes, whereas little attempts have been reported on phosphorus removal in SBR activated sludge processes. It is most probable that both phosphorus and nitrogen in addition to organic matter can be removed by the SBR activated sludge processes if aerobic and anaerobic treatments were properly incorporated into a cycle of batch operation. Laboratory scale experiments on aerobic/anaerobic operations of the SBR processes were conducted aiming at simultaneous removal of phosphorus, nitrogen, and organic matter without any addition of chemicals. SBR of 5 1 in working volume was fed with synthetic wastewater in which TOC = 120-200 mg/l, BOD = 200-400 mg/l, total phosphorus = 6-12 mg/1 and total nitrogen = 36-60 mg/1. The following sequence of operations were conducted in a batch cycle; 1) mixing and inflow of wastewater, 2) aeration and mixing, 3) mixing, 4) aeration and mixing, 5) settling and 6) decanting. It was secured from continuous monitoring of dissolved oxygen concentration in the mixed liquor that both anaerobic (stages 1 and 3) and aerobic (stages 2 and 4) treatments were repeated twice in a cycle. In some operations, stages 3 and 4 were omitted for comparison, i.e. anaerobic and aerobic treatments were conducted only once per cycle. The volume of mixed liquor before the inflow of wastewater at the beginning of a cycle (low level) ranged from 33 % to 50 % of that during full volume stages from 2 to 5 (high level). In stage 6, the supernatant was discharged down to the low level and followed by the next cycle of operation. The length of time for a cycle of operation was β h or 9.5 h. Among various types of operations tried, the following sequence was the best in the quality of effluent; 1) 2 h for mixing and inflow, 2) 3 h for aeration and mixing, 3) 3 h for mixing, 4) 20 min for aeration and mixing, 5) 1 h for settling, and 6) 10 min for decanting in a cycle of 9.5 h if influent BOD, total phosphorus and total nitrogen concentrations were 400 mg/1, 12 mg/1 and 60 mg/1, respectively, and BOD loading was 0.68 kg/cu m/d. Total phosphorus and nitrogen concentrations in the effluent were 1.2 mg/1 and 8.0 mg/1, respectively. Similar results were obtained in operations where anaerobic and aerobic treatments were repeated twice in a cycle. In operations where effluent quality was satisfactory, release of phosphorus from the sludge was observed in stage 1. The reactor concentration of filterable total phosphorus (FTP) increased rapidly and its maximum value observed at the end of the stage was ca. 50 mg/1. Phosphorus uptake under aerobic condition (stage 2) decreased FTP to the level of effluent FTP. The luxury uptake of phosphorus by the sludge was noted, i.e. phosphorus content in the sludge ranged from 2.0 % to 4.0 %(w/w). The release of phosphorus from the sludge and subsequent luxury uptake were not significant during stages 3 to 4, hence, further removal of phosphorus was not remarkable. Nitrate nitrogen concentration increased during stage 2 by nitrification. Denitrification was noted both in stages 1 and 3. In stage 1, filterable total organic carbon (FTOC) increased by the inflow of wastewater. It should be, therefore, utilized for denitrification as hydrogen donor. FTOC decreased rapidly after the initiation of aeration in stage 2 and little FTOC remained after the latter half of stage 2. Intracellular organic substances of the sludge, therefore, were regarded to be utilized for denitrification without any addition of chemicals at stage 3. In the best operation, from 50% to 70% out of total nitrogen inflow was removed by denitrification. Effluent BOD was less than 10 mg/l. Although further investigations would be required to determine optimum scheduling in a cycle such as the combination of anaerobic and aerobic periods, the ratio between low and high levels in the reactor, the length of a cycle, and etc. for a given wastewater, the SBR activated sludge process would be a promising wastewater treatment process for simultaneous removal of phosphorus, nitrogen and organiC matter by a single reactor. In spite of complicated operational sequence, full scale automatic operations of SBR activated sludge process would be possible economically even in small-scale plants by using recently advanced microcomputer technology.


2010 ◽  
Vol 36 (4) ◽  
pp. 715-721 ◽  
Author(s):  
Cory P. McDonald ◽  
Noel R. Urban ◽  
Colin M. Casey

1979 ◽  
Vol 6 (4) ◽  
pp. 449 ◽  
Author(s):  
GR Donovan

Eight wheat varieties which normally produce grain of different final percentage nitrogen content were grown under field and glasshouse conditions. The final percentage grain nitrogen of the field grown varieties ranked in the expected order; however, total nitrogen/grain, DNAIgrain, RNA/grain and non-protein nitrogen/grain during grain development differed between varieties. DNA/grain reached a maximum value in all varieties between 21 and 28 days post- anthesis, suggesting a longer period of cell division than previously reported. There was no apparent relationship between final percentage grain nitrogen and either DNA, total grain RNA or the concentration of grain amino acids during development. Heads from glasshouse grown wheat were detached at 8 days postanthesis and grown in liquid culture under conditions where the nitrogen concentration of the culture medium was varied. Fresh weight/grain, DNA/grain, RNA/grain and total grain nitrogen all increased with increasing nitrogen concentration in the culture medium, but grain dry weight remained constant at the different nitrogen concentrations. The changes in fresh weight/grain, DNA/grain and RNA/grain were not the same for all varieties. A possible relationship between total grain nitrogen and DNA/grain and RNA/grain during seed development exists for heads grown in culture for individual varieties. This apparent relationship for individual varieties cannot be used to explain intervarietal differences in total grain nitrogen because in some cases different varieties grown under identical culture conditions, although producing grain of equivalent total nitrogen, had widely differing levels of both DNA and RNA per grain.


2020 ◽  
Vol 10 (11) ◽  
pp. 3925
Author(s):  
Mazhar Iqbal ◽  
Md Rowshon Kamal ◽  
Mohd Amin Mohd Soom ◽  
Muhammad Yamin ◽  
Mohd Fazly M. ◽  
...  

Nitrogen loss from agricultural fields results in contamination of ground and surface water resources due to leaching and runoff, respectively. Nitrogen transport dynamics vary significantly among agricultural fields of different climates, especially in the tropical climate. This study intended to evaluate the rainfall impact on nitrogen distribution and losses under tropical rain-fed conditions. The study was carried out in a sweet corn field for two growing seasons at the Malaysian Agricultural Research and Development Institute (MARDI) research field. The HYDRUS-1D numerical model was used to simulate nitrogen transport dynamics in this study. The observed nitrogen concentrations were used for calibration and validation of the model. Total nitrogen input to sweet corn was 120 kg/ha for both seasons. Nitrogen losses through surface runoff and leaching were dominating pathways. Surface runoff accounted for 35.3% and 22.2% of total nitrogen input during the first and second seasons, respectively. The leaching loss at 60 cm depth accounted for 4.0% (first season) and 18.5% (second season). The crop N uptake was 37.5% and 24.9% during the first and second seasons, respectively. Nitrate was the dominant form of N uptake by the crop that accounted for 83.6% (first season) and 78.5% (second season). The HYDRUS-1D simulation results of nitrogen concentrations and fluxes were found in good agreement with observed data. The overall results of simulation justified the HYDRUS-1D for improved fertilizer use in the tropical climate.


2006 ◽  
Vol 63 (5) ◽  
pp. 433-438 ◽  
Author(s):  
Gustavo Gonzaga Henry-Silva ◽  
Antonio Fernando Monteiro Camargo

The effluents from fish farming can increase the quantity of suspended solids and promote the enrichment of nitrogen and phosphorus in aquatic ecosystems. In this context, the aim of this work was to evaluate the efficiency of three species of floating aquatic macrophytes (Eichhornia crassipes, Pistia stratiotes and Salvinia molesta) to treat effluents from Nile tilapia culture ponds. The effluent originated from a 1,000-m² pond stocked with 2,000 male Nile tilapia Oreochromis niloticus. The treatment systems consisted of 12 experimental tanks, three tanks for each macrophyte species, and three control tanks (without plants). Water samples were collected from the: (i) fish pond source water, (ii) effluent from fish pond and (iii) effluents from the treatment tanks. The following water variables were evaluated: turbidity, total and dissolved nitrogen, ammoniacal-N, nitrate-N, nitrite-N, total phosphorus and dissolved phosphorus. E. crassipes and P. stratiotes were more efficient in total phosphorus removal (82.0% and 83.3%, respectively) and total nitrogen removal (46.1% and 43.9%, respectively) than the S. molesta (72.1% total phosphorus and 42.7% total nitrogen) and the control (50.3% total phosphorus and 22.8% total nitrogen), indicating that the treated effluents may be reused in the aquaculture activity.


2001 ◽  
Vol 61 (2) ◽  
pp. 259-266 ◽  
Author(s):  
M. CALLISTO ◽  
P. MORENO ◽  
F. A. R. BARBOSA

The assessment of the diversity of habitats and the characterisation of the functional trophic groups of benthic macroinvertebrate communities of some rivers of Serra do Cipó (MG) were the main objectives of this study. The available trophic resources and the types of substrata were characterised along with the structure and composition of their using functional trophic groups. Serra do Cipó is a watershed divisor of the São Francisco and Doce River basins, including a series of streams and rivers, of good water quality and well preserved ecological characteristics. Samples were collected in Cipó, Peixe and Preto do Itambé rivers, besides the Indaiá and Capão da Mata streams at 26 sampling stations, during the rainy (February) and dry (October) seasons of 1998, using "Kicking nets" of 0.125 mm mesh size. The group of collectors (Baetidae, Leptophlebiidae and Leptohyphidae) was the most abundant, followed by collector-predators (Hydrophilidae, Ceratopogonidae, Chironomidae-Tanypodinae), and detritivorous-herbivores (Oligochaeta). The riparian vegetation, together with the aquatic macrophytes, are the substrata containing the highest richness of functional trophic groups and the higher habitat diversity. The results suggest that the use of functional trophic groups, together with habitat evaluation, are efficient tools in the evaluation of the diversity of benthic macroinvertebrates, particularly in altitudinal lotic ecosystems.


Sign in / Sign up

Export Citation Format

Share Document