Mismatch repair and the fidelity of genetic recombination

Genome ◽  
1989 ◽  
Vol 31 (1) ◽  
pp. 68-73 ◽  
Author(s):  
Miroslav Radman

Two modes of mismatch repair are known to operate in bacteria: long-patch mismatch repair and very short patch mismatch repair. Very short patch mismatch repair systems act on a specific mismatch by conserving only one base pair. Therefore, when very short patch mismatch repair acts on heteroduplex recombination intermediates, it hyper-recombines specific markers by creating patchwork sequences, i.e., apparent multiple exchange events, on the repaired strand. Long-patch mismatch repair is antirecombinagenic, apparently by decomposing heteroduplex DNA or aborting its formation whenever well-recognized mismatches are formed by strand exchange between nonidentical parental sequences. It is postulated here that mismatch-stimulated antirecombination by long-patch mismatch repair is a "proofreading" system assuring high fidelity of homologous recombination. This accounts for chromosomal stability in eucaryotes (i.e., the rare occurrence of chromosomal aberrations and mitotic recombination versus the high frequency of precise sister chromatid exchange), suggests a role for diverged repetitive and other noncoding sequences as chromosomal antirecombination elements, and provides a molecular mechanism for speciation without the necessity of geographical separation.Key words: mismatch repair, genetic recombination, antirecombination, elements, speciation.


Genetics ◽  
1994 ◽  
Vol 137 (1) ◽  
pp. 19-39 ◽  
Author(s):  
E Alani ◽  
R A Reenan ◽  
R D Kolodner

Abstract The yeast Saccharomyces cerevisiae encodes a set of genes that show strong amino acid sequence similarity to MutS and MutL, proteins required for mismatch repair in Escherichia coli. We examined the role of MSH2 and PMS1, yeast homologs of mutS and mutL, respectively, in the repair of base pair mismatches formed during meiotic recombination. By using specifically marked HIS4 and ARG4 alleles, we showed that msh2 mutants displayed a severe defect in the repair of all base pair mismatches as well as 1-, 2- and 4-bp insertion/deletion mispairs. The msh2 and pms1 phenotypes were indistinguishable, suggesting that the wild-type gene products act in the same repair pathway. A comparison of gene conversion events in wild-type and msh2 mutants indicated that mismatch repair plays an important role in genetic recombination. (1) Tetrad analysis at five different loci revealed that, in msh2 mutants, the majority of aberrant segregants displayed a sectored phenotype, consistent with a failure to repair mismatches created during heteroduplex formation. In wild type, base pair mismatches were almost exclusively repaired toward conversion rather than restoration. (2) In msh2 strains 10-19% of the aberrant tetrads were Ab4:4. (3) Polarity gradients at HIS4 and ARG4 were nearly abolished in msh2 mutants. The frequency of gene conversion at the 3' end of these genes was increased and was nearly the frequency observed at the 5' end. (4) Co-conversion studies were consistent with mismatch repair acting to regulate heteroduplex DNA tract length. We favor a model proposing that recombination events occur through the formation and resolution of heteroduplex intermediates and that mismatch repair proteins specifically interact with recombination enzymes to regulate the length of symmetric heteroduplex DNA.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Estefanía Hernandez-Martin ◽  
Enrique Arguelles ◽  
Yifei Zheng ◽  
Ruta Deshpande ◽  
Terence D. Sanger

AbstractHigh-frequency peripheral nerve stimulation has emerged as a noninvasive alternative to thalamic deep brain stimulation for some patients with essential tremor. It is not known whether such techniques might be effective for movement disorders in children, nor is the mechanism and transmission of the peripheral stimuli to central brain structures understood. This study was designed to investigate the fidelity of transmission from peripheral nerves to thalamic nuclei in children with dystonia undergoing deep brain stimulation surgery. The ventralis intermediate (VIM) thalamus nuclei showed a robust evoked response to peripheral high-frequency burst stimulation, with a greatest response magnitude to intra-burst frequencies between 50 and 100 Hz, and reliable but smaller responses up to 170 Hz. The earliest response occurred at 12–15 ms following stimulation onset, suggesting rapid high-fidelity transmission between peripheral nerve and thalamic nuclei. A high-bandwidth, low-latency transmission path from peripheral nerve to VIM thalamus is consistent with the importance of rapid and accurate sensory information for the control of coordination and movement via the cerebello-thalamo-cortical pathway. Our results suggest the possibility of non-invasive modulation of thalamic activity in children with dystonia, and therefore the possibility that a subset of children could have beneficial clinical response without the need for invasive deep brain stimulation.



Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 407-416 ◽  
Author(s):  
P Manivasakam ◽  
Susan M Rosenberg ◽  
P J Hastings

Abstract In yeast meiotic recombination, alleles used as genetic markers fall into two classes as regards their fate when incorporated into heteroduplex DNA. Normal alleles are those that form heteroduplexes that are nearly always recognized and corrected by the mismatch repair system operating in meiosis. High PMS (postmeiotic segregation) alleles form heteroduplexes that are inefficiently mismatch repaired. We report that placing any of several high PMS alleles very close to normal alleles causes hyperrecombination between these markers. We propose that this hyperrecombination is caused by the high PMS allele blocking a mismatch repair tract initiated from the normal allele, thus preventing corepair of the two alleles, which would prevent formation of recombinants. The results of three point crosses involving two PMS alleles and a normal allele suggest that high PMS alleles placed between two alleles that are normally corepaired block that corepair.





1994 ◽  
Vol 14 (7) ◽  
pp. 4802-4814
Author(s):  
S D Priebe ◽  
J Westmoreland ◽  
T Nilsson-Tillgren ◽  
M A Resnick

Sequence homology is expected to influence recombination. To further understand mechanisms of recombination and the impact of reduced homology, we examined recombination during transformation between plasmid-borne DNA flanking a double-strand break (DSB) or gap and its chromosomal homolog. Previous reports have concentrated on spontaneous recombination or initiation by undefined lesions. Sequence divergence of approximately 16% reduced transformation frequencies by at least 10-fold. Gene conversion patterns associated with double-strand gap repair of episomal plasmids or with plasmid integration were analyzed by restriction endonuclease mapping and DNA sequencing. For episomal plasmids carrying homeologous DNA, at least one input end was always preserved beyond 10 bp, whereas for plasmids carrying homologous DNA, both input ends were converted beyond 80 bp in 60% of the transformants. The system allowed the recovery of transformants carrying mixtures of recombinant molecules that might arise if heteroduplex DNA--a presumed recombination intermediate--escapes mismatch repair. Gene conversion involving homologous DNAs frequently involved DNA mismatch repair, directed to a broken strand. A mutation in the PMS1 mismatch repair gene significantly increased the fraction of transformants carrying a mixture of plasmids for homologous DNAs, indicating that PMS1 can participate in DSB-initiated recombination. Since nearly all transformants involving homeologous DNAs carried a single recombinant plasmid in both Pms+ and Pms- strains, stable heteroduplex DNA appears less likely than for homologous DNAs. Regardless of homology, gene conversion does not appear to occur by nucleolytic expansion of a DSB to a gap prior to recombination. The results with homeologous DNAs are consistent with a recombinational repair model that we propose does not require the formation of stable heteroduplex DNA but instead involves other homology-dependent interactions that allow recombination-dependent DNA synthesis.



1985 ◽  
Vol 5 (8) ◽  
pp. 2029-2038
Author(s):  
D Treco ◽  
B Thomas ◽  
N Arnheim

We describe a novel system for the analysis of sequence-specific meiotic recombination in Saccharomyces cerevisiae. A comparison of three adjacent restriction fragments from the human beta-globin locus revealed that one of them, previously hypothesized to contain a relative hot spot for genetic recombination, engages in reciprocal exchange during yeast meiosis significantly more frequently than either of the other two fragments. Removal of the longest of four potential Z-DNA-forming regions from this fragment does not affect the high frequency of genetic recombination.



1994 ◽  
Vol 14 (1) ◽  
pp. 400-406
Author(s):  
W P Deng ◽  
J A Nickoloff

Previous work indicated that extrachromosomal recombination in mammalian cells could be explained by the single-strand annealing (SSA) model. This model predicts that extrachromosomal recombination leads to nonconservative crossover products and that heteroduplex DNA (hDNA) is formed by annealing of complementary single strands. Mismatched bases in hDNA may subsequently be repaired to wild-type or mutant sequences, or they may remain unrepaired and segregate following DNA replication. We describe a system to examine the formation and mismatch repair of hDNA in recombination intermediates. Our results are consistent with extrachromosomal recombination occurring via SSA and producing crossover recombinant products. As predicted by the SSA model, hDNA was present in double-strand break-induced recombination intermediates. By placing either silent or frameshift mutations in the predicted hDNA region, we have shown that mismatches are efficiently repaired prior to DNA replication.



1989 ◽  
Vol 9 (12) ◽  
pp. 5500-5507
Author(s):  
M D Baker

Homologous recombination was used in a previous study to correct a 2-base-pair deletion in the third constant domain (Cmu3) of the haploid chromosomal mu gene in a mutant hybridoma cell line by transfer of a pSV2neo vector bearing a subfragment of the normal Cmu region (M.D. Baker, N. Pennell, L. Bosnoyan, and M.J. Shulman, Proc. Natl. Acad. Sci. USA 85:6432-6436, 1988). In these experiments, both gene replacement and single reciprocal crossover events were found to restore normal, cytolytic 2,4,6-trinitrophenyl-specific immunoglobulin M production to the mutant cells. In the cases of single reciprocal recombination, the structure of the recombinant mu gene is such that the normal Cmu region, in its correct position 3' of the expressed 2,4,6-trinitrophenyl-specific heavy-chain variable region, is separated from the mutant Cmu region by the integrated vector sequences. I report here that homologous recombination occurs with high frequency between the duplicate Cmu regions in mitotically growing hybridoma cells. The homologous recombination events were easily detected since they generated hybridomas that were phenotypically different from the parental cells. Analysis of the recombinant cells suggests that gene conversion is the most frequent event, occurring between 60 and 73% of the time. The remaining events consisted of single reciprocal crossovers. Intrachromatid double reciprocal recombination was not detected. The high frequency of recombination, the ability to isolate and analyze the participants in the recombination reactions, and the capacity to generate specific modifications in the immunoglobulin Cmu regions by gene targeting suggest that this system will be useful for studying mammalian chromosomal homologous recombination. Moreover, the ability to specifically modify the chromosomal immunoglobulin genes by homologous recombination should facilitate studies of immunoglobulin gene regulation and expression and provide a more convenient of engineering specifically modified antibody.



2016 ◽  
Author(s):  
Maureen M. Mundia ◽  
Alissa C. Magwood ◽  
Mark D. Baker

ABSTRACTIn this study, we utilized mouse hybridoma cell lines stably expressing ectopic wild-type Rad51, or the Rad51-K133A and Rad51-K133R catalytic mutants deficient in ATP binding and ATP hydrolysis, respectively, to investigate effects on the Rad51 nucleoprotein filament in vivo. Immunoprecipitation studies reveal interactions between ectopic wild-type Rad51, Rad51-K133A and Rad51-K133R and endogenous Rad51, Brca2 and p53 proteins. Importantly, the expression of Rad51-K133A and Rad51-K133R catalytic mutants (but not wild-type Rad51) targets endogenous Rad51, Brca2 and p53 proteins for proteasome-mediated degradation. Expression of Rad51-K133R significantly reduces nascent DNA synthesis (3’ polymerization) during homologous recombination (HR), but the effects of Rad51-K133A on 3’ polymerization are considerably more severe. Provision of additional wild-type Rad51 in cell lines expressing Rad51-K133A or Rad51-K133R does not restore diminished levels of endogenous Brca2, Rad51 or p53, nor restore the deficiency in 3’ polymerization. Cells expressing Rad51-K133A are also significantly reduced in their capacity to drive strand exchange through regions of heterology. Our results reveal an interesting mechanistic dichotomy in the way mutant Rad51-K133A and Rad51-K133R proteins influence 3’ polymerization and provide novel insight into the mechanism of their dominant-negative phenotypes.





Sign in / Sign up

Export Citation Format

Share Document