Three-dimensional study of spatial submerged hydraulic jump

2007 ◽  
Vol 34 (9) ◽  
pp. 1140-1148 ◽  
Author(s):  
H K Zare ◽  
R E Baddour

A three-dimensional (3D) study of spatial submerged hydraulic jumps (SSHJs) was carried out using a physical model for Froude numbers Fr1 = 2.00 and 3.75 and width ratios α = 0.20 and 0.33. Three orthogonal components of the velocity field were obtained with an acoustic Doppler velocimeter (ADV). The 3D velocity field has indicated that the jump consisted of a central jet-like flow, close to the channel bottom, surrounded by vertical and horizontal circulations (rollers). The circulation was predominantly in vertical planes in the channel central region of the flow and in horizontal planes close to the walls. Vertical and horizontal profiles of stream-wise velocity characterized the 3D roller with two length scales, Lrv and Lrh. The strength of the roller was stronger close to the walls than at the centreline of the jump. Sequent depth and energy head loss for submerged symmetric hydraulic jumps are discussed in terms of the submergence ratio S = y3/y2.Key words: hydraulic jump, spatial, submerged, roller length, sequent depth, energy dissipation.

2018 ◽  
Vol 40 ◽  
pp. 05067 ◽  
Author(s):  
Vimaldoss Jesudhas ◽  
Frédéric Murzyn ◽  
Ram Balachandar

This paper presents the results of three-dimensional, unsteady, Improved Delayed Detached Eddy Simulations of an oscillating and a stable hydraulic jump at Froude numbers of 3.8 and 8.5, respectively. The different types of oscillations characterised in a hydraulic jump are analysed by evaluating the instantaneous flow field. The instability caused by the flapping wall-jet type flow in an oscillating jump is distinct compared to the jump-toe fluctuations caused by the spanwise vortices in the shear layer of a stable jump. These flow features are accurately captured by the simulations and are presented with pertinent discussions. The near-bed vortical structures in an oscillating jump is extracted and analysed using the λ2 criterion.


Author(s):  
Kiyoumars Roushangar ◽  
Farzin Homayounfar ◽  
Roghayeh Ghasempour

Abstract The hydraulic jump phenomenon is a beneficial tool in open channels for dissipating the extra energy of the flow. The sequent depth ratio and hydraulic jump length critically contribute to designing hydraulic structures. In this research, the capability of Support Vector Machine (SVM) and Gaussian Process Regression (GPR) as kernel-based approaches was evaluated to estimate the features of submerged and free hydraulic jumps in channels with rough elements and various shapes, followed by comparing the findings of GPR and SVM models and the semi-empirical equations. The results represented the effect of the geometry (i.e., steps and roughness elements) of the applied appurtenances on hydraulic jump features in channels with appurtenances. Moreover, the findings confirmed the significance of the upstream Froude number in the sequent depth ratio estimating in submerged and free hydraulic jumps. In addition, the immersion was the highest contributing variable regarding the submerged jump length on sloped smooth bed and horizontal channels. Based on the comparisons among kernel-based approaches and the semi-empirical equations, kernel-based models showed better performance than these equations. Finally, an uncertainty analysis was conducted to assess the dependability of the best applied model. The results revealed that the GRP model possesses an acceptable level of uncertainty in the modeling process.


2019 ◽  
Vol 71 (2) ◽  
pp. 105-111
Author(s):  
Arpan Arunrao Deshmukh ◽  
Naveen Sudharsan ◽  
Avinash D Vasudeo ◽  
Aniruddha Dattatraya Ghare

Hydraulic jump is an important phenomenon in open channel flows such as rivers and spillways. Hydraulic jump is mainly used for kinetic energy dissipation at the downstream side of a spillway with the assist of baffle blocks. It has been demonstrated that corrugated or rough beds show considerably more energy dissipation than smooth beds. The experimental research evaluating the effect of crushed stones on the hydraulic jump is presented in this paper. Five different-size sets of crushed stones were used. Results show that the effect of rough bed does not increase after a certain height of crushed stone is reached.


2015 ◽  
Vol 17 (4) ◽  
pp. 662-678 ◽  
Author(s):  
Arnau Bayon-Barrachina ◽  
Petra Amparo Lopez-Jimenez

The present paper deals with a hydraulic jump study, characterization and numerical modeling. Hydraulic jumps constitute a common phenomenon in the hydraulics of open channels that increases the shear stress on streambeds, so promoting their erosion. A three-dimensional computational fluid dynamics model is proposed to analyze hydraulic jumps in horizontal smooth rectangular prismatic open-air channels (i.e., the so-called classical hydraulic jump). Turbulence is modeled using three widely used Reynolds-averaged Navier–Stokes (RANS) models, namely: Standard k − ɛ, RNG k − ɛ, and SST k − ω. The coexistence of two fluids and the definition of an interface between them are treated using a volume method in Cartesian grids of several element sizes. An innovative way to deal with the outlet boundary condition that allows the size of the simulated domain to be reduced is presented. A case study is conducted for validation purposes (FR1 ∼ 6.10, Re1 ∼ 3.5·105): several variables of interest are computed (sequent depths, efficiency, roller length, free surface profile, etc.) and compared to previous studies, achieving accuracies above 98% in all cases. In the light of the results, the model can be applied to real-life cases of design of hydraulic structures.


2014 ◽  
Vol 61 (3-4) ◽  
pp. 127-140 ◽  
Author(s):  
Tomasz Kolerski ◽  
Paweł Wielgat

Abstract A poorly designed culvert inlet structure causes scouring, which can lead to the collapse of the culvert and significant damage to the neighboring land. A set of laboratory tests was evaluated to examine velocity distribution at the culvert inlet. A three-dimensional acoustic Doppler velocimeter was used to measure instantaneous flow velocity upstream of the culvert. The analysis of mean velocities, turbulence strength, and Reynolds stresses was performed to understand the flow structure near the culvert entrance.


1999 ◽  
Vol 26 (3) ◽  
pp. 368-373 ◽  
Author(s):  
Helmut Stahl ◽  
Willi H Hager

Hydraulic jumps in conduits containing free surface flow have received practically no attention. This project was conducted to investigate experimentally the main features of such jumps and to obtain limits for conduit choking. The sequent depth ratio is determined in terms of the approach Froude number based on the conventional momentum approach. The lengths of the surface recirculation and aeration zones are also considered. Two different appearances of jumps are discussed and it is demonstrated that jumps with a small approach depth differ from those with a depth larger than about 30% of the conduit diameter. A choking condition is proposed for which conduits are subjected to full pipe downstream flow. Photographs are used to describe the main flow pattern. The results of this study are readily applicable for design.Key words: aeration, conduit choking, hydraulic jump, pipe flow, sequent depths.


2017 ◽  
Vol 834 ◽  
pp. 125-148 ◽  
Author(s):  
S. A. Thorpe ◽  
J. Malarkey ◽  
G. Voet ◽  
M. H. Alford ◽  
J. B. Girton ◽  
...  

A model devised by Thorpe & Li (J. Fluid Mech., vol. 758, 2014, pp. 94–120) that predicts the conditions in which stationary turbulent hydraulic jumps can occur in the flow of a continuously stratified layer over a horizontal rigid bottom is applied to, and its results compared with, observations made at several locations in the ocean. The model identifies two positions in the Samoan Passage at which hydraulic jumps should occur and where changes in the structure of the flow are indeed observed. The model predicts the amplitude of changes and the observed mode 2 form of the transitions. The predicted dissipation of turbulent kinetic energy is also consistent with observations. One location provides a particularly well-defined example of a persistent hydraulic jump. It takes the form of a 390 m thick and 3.7 km long mixing layer with frequent density inversions separated from the seabed by some 200 m of relatively rapidly moving dense water, thus revealing the previously unknown structure of an internal hydraulic jump in the deep ocean. Predictions in the Red Sea Outflow in the Gulf of Aden are relatively uncertain. Available data, and the model predictions, do not provide strong support for the existence of hydraulic jumps. In the Mediterranean Outflow, however, both model and data indicate the presence of a hydraulic jump.


1966 ◽  
Vol 92 (4) ◽  
pp. 154-156
Author(s):  
Nallamuthu Rajaratnam

Author(s):  
N P Reddy ◽  
M J Askew ◽  
F M Baniewicz ◽  
A Melby ◽  
K A Fuller ◽  
...  

A technique is developed for quantitative measurement of general three-dimensional motion, and this technique is applied to the kinematics of anatomical joints. The spatial locations of three orthogonal points representing coordinate frames on each member of the joint are measured during motion of the joint by photo encoders of a three-dimensional mechanical pointer. Kinematic calculations are used to derive, from the experimentally collected data, the six orthogonal components of the motion of one member relative to the other. The accuracy of this technique is presented. Applications to the knee and ankle are discussed.


Author(s):  
Hui Yang ◽  
Li Jia ◽  
Lixin Yang

In this paper, piston wind effect on smoke diffusion characteristic in subway tunnel is studied by using three-dimensional transient computational fluid dynamics (CFD) method. In the first simulation case, fire disaster is simulated with homogeneous resting initial field condition. In the second simulation case, the train’s decelerating process till stopping in the tunnel is simulated for getting three-dimensional tunnel air velocity field distribution. Then the final heterogeneous air velocity field when the train stops in the tunnel is taken as initial field condition and the same fire scenario as the first case is simulated again. The data obtained under both initial conditions are compared by detecting people evacuation safety and the influence of initial air velocity field is analyzed. The results show that the inertial air velocity field caused by train’s movement has significant influence on smoke diffusion at the first few minutes of fire disaster, which is the key time for people’s evacuation. The adopted method in this paper and the simulation result could be used in establishing more effective subway fire evacuation plan.


Sign in / Sign up

Export Citation Format

Share Document