Use of nondestructive testing to establish mechanistic-based seasonal load-carrying capacity of thin-paved highways in Saskatchewan

2008 ◽  
Vol 35 (7) ◽  
pp. 708-715 ◽  
Author(s):  
Curtis Berthelot ◽  
Erin Stuber ◽  
Diana Podborochynski ◽  
Jena Fair ◽  
Brent Marjerison

It has long been known that increased load-carrying capacity during the winter months is very beneficial to rural road transportation in Saskatchewan. However, it has been observed that rapid weakening of thin-paved roads during spring thaw is highly detrimental to the load-carrying capacity of these roads. Direct measures of the structural integrity of Saskatchewan roads as a function of seasonal changes have not been quantified in the past. The objective of this study was to directly quantify the impact frost action has on the load-carrying capacity of thin-surfaced roads. This study examined the magnitude and rate of change of in situ structural deflection responses of a typical Saskatchewan thin-surfaced road during fall freeze-up and spring thaw in 2006–2007. This study showed that structural deflection responses significantly improved with frost depth greater than 50 cm and that deflection response significantly worsened with minimal thaw depth, as expected. The data obtained also indicated a significant increase in nonlinear strain weakening behavior during fall freeze-up at frost depths less than 50 cm. Therefore, based on the findings of this study, the frost thickness and the rate of change in frost thickness need to be directly considered in the fall and in the spring when calculating seasonal load limits of thin-paved roads.

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1333
Author(s):  
Syed S. U. H. Bukhari ◽  
Alan G. McElligott ◽  
Rebecca S. V. Parkes

There are approximately 112 million working equids in developing countries, many of which are associated with brick kilns. Brick kilns and overloading are associated with welfare problems in working equids. Understanding equids’ abilities and influencing factors are important for both effective performance and welfare. Traditionally, measurement of the amount of ‘bone’ was used, and more recently, gait symmetry has been identified as a potential marker for loading capacity. Assessment of stride parameters and gait kinematics provides insights into adaptations to loading and may help determine cut-off loads. Physiological factors such as the ability to regain normal heart rates shortly after work is an important tool for equine fitness assessment and a more accurate measure of load-carrying capacity than absolute heart rate. Oxidative stress, plasma lactate, and serum creatine kinase activity are reliable biochemical indicators of loading ability. For monitoring stress, salivary cortisol is superior to serum cortisol level for assessment of hypothalamus-pituitary-adrenal axis and is related to eye temperatures, but this has yet to be interpreted in terms of load-carrying ability in equids. Further research is needed to standardize the evidence-based load-carrying capacity of working horses and donkeys.


Author(s):  
Thomas Westergaard Jensen ◽  
Linh Cao Hoang

The conic yield criteria for reinforced concrete slabs in bending are often used when evaluating the load‐carrying capacity of slab bridges. In the last decades, the yield criteria combined with numerical limit analysis have shown to be efficient methods to determine the load carrying capacity of slabs. However, the yield criteria overestimate the torsion capacity of slabs with high reinforcement ratios and it cannot handle slabs with construction joints. In this paper, numerical limit analysis with the conic yield criteria are compared with yield criteria based on an optimized layer model. The analysis show an increasing overestimation of the load carrying capacity for increasing reinforcement degrees. Furthermore, yield criteria, which combine the conic yield criteria with an extra linear criterion due to friction, are presented for slab bridges with construction joints. The yield criteria for slabs with construction joints are used, in combination with limit analysis, to evaluate a bridge constructed of pre‐cast overturned T‐beams and in‐situ concrete. The analysis show that the load carrying capacity is overestimated, when the construction joints are not considered in the yield criteria.


2019 ◽  
Vol 59 (2) ◽  
pp. 144-152
Author(s):  
Mohmmadraiyan M. Munshi ◽  
Ashok R. Patel ◽  
Gunamani B. Deheri

This paper attempts to study a ferrofluid lubrication based rough sine film slider bearing with assorted porous structure using a numerical approach. The fluid flow of the system is regulated by the Neuringer-Rosensweig model. The impact of the transverse surface roughness of the system has been derived using the Christensen and Tonder model. The corresponding Reynolds’ equation has been used to calculate the pressure distribution which, in turn, has been the key to formulate the load carrying capacity equation. A graphical representation is made to demonstrate the calculated value of the load carrying capacity which is a dimensionless unit. The numbers thus derived have been used to prove that ferrofluid lubrication aids the load carrying capacity. The study suggests that the positive impact created by magnetization in the case of negatively skewed roughness helps to partially nullify the negative impact of the transverse roughness. Further investigation implies that when the Kozeny-Carman’s model is used, the overall performance is enhanced. The Kozeny-Carman’s model is a form of an empirical equation used to calculate permeability that is dependent on various parameters like pore shape, turtuosity, specific surface area and porosity. The success of the model can be accredited to its simplicity and efficiency to describe measured permeability values. The obtained equation was used to predict the permeability of fibre mat systems and of vesicular rocks.


Eng ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 240-248
Author(s):  
Mohammad Nurul Islam

Construction of civil engineering structures on or next to a slope requires special attention to meet the bearing capacity requirements of soils. In this paper, to address such a challenge, we present laboratory-scale model tests to investigate the effect of footing shape on the sloped surface. The model comprised of a well stiffened mild steel box with three sides fixed and one side open. We considered both with and without reinforcement to assess the effectiveness of reinforcement on the sloped surface. Also, we used three types of footing (i.e., square, rectangular, and circular) to measure the footing shape effects. We considered three different slope angles to evaluate the impact of the sloped face corresponding to the applied load and the reinforcement application. We obtained that the maximum load carrying capacity in the square footing was higher than the rectangular and the circular footing for both the reinforced and the unreinforced soil. With the increase of geo-reinforcement in all three footing shapes and three sloped angles, the load carrying capacity increased. We also noticed a limiting condition in geo-reinforcement placement effectiveness. And we found that with the increase of slope, the load bearing capacity decreased. For a steep slope, the geo-reinforcement placement and the footing shape selection is crucial in achieving the external load sustainability, which we addressed herein.


2013 ◽  
Vol 577-578 ◽  
pp. 409-412
Author(s):  
Hidetoshi Sakamoto ◽  
Yoshifumi Ohbuchi ◽  
Hiroyuki Kuramae

In this paper, the effects of collision velocity on bullet deformation were discussed and performance of protection board made of PC (polycarbonate) plate was estimated. The deformation of the bullet and the PC board after collision were measured by 3-dimensional digitizing machine.Furthermore, the bullet collision analysis was performed by FEM analysis code "LS-DYNA", and the impact load carrying capacity of PC plate was discussed by comparing the experimental results with the analytical ones


Author(s):  
Vishnu Vardan.A ◽  
Kaarthik. M

There are two structural members used in steel construction the hot rolled members and the cold formed members. They are light members compared to the traditional heavier hot rolled steel structural members used in the field. They have high strength to weight ratio resulting in less dead weight making it a good option in construction of bridges roof trusses transmission line towers multi storied buildings and other structural members. This paper is done to understand the flexural capacity and to enhance it by developing innovative latticed cold formed steel beam. The impact of web opening of the cold formed beam on the flexural behavior of cold formed built-up I section under two point loading is investigated for the simply supported end conditions. Numerical analysis is performed using finite element analysis (FEM) software. From results, the load vs. Deflection curve, failure modes and ultimate load carrying capacity of the specimen presented in this paper. Therefore the main focus of this project is to investigate the flexural behavior of these steel members and by replacing the lattice hot rolled section by cold formed steel sections. The ultimate load carrying capacity with failure mode of simulated FEA models was compared with experimental results.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jianhang Chen ◽  
Xin Dai ◽  
Junwen Zhang

The force transfer of fully grouted rock bolts is playing a significant effect in determining the rock reinforcement quality. To evaluate the performance of rock bolts, laboratory pulling tests were commonly used. Experimental tests proved that the confining medium diameter had an effect on the rock bolting performance. However, little analytical work has been performed to investigate the impact of the confining medium diameter on rock bolt load-carrying capacity. Therefore, this paper analytically studied the confining medium diameter effect on the load-carrying capacity of rock bolts. It was found that the load-carrying capacity of rock bolts was obviously affected by the confining medium diameter. Moreover, the larger the confining medium diameter, the higher the load-carrying capacity of rock bolts. However, the ascending rate of the load-carrying capacity gradually declined. This load-carrying capacity variation trend consistently agreed with experimental results. Moreover, with the confining medium diameter ascending, the load-carrying capacity variation trend was consistent when the confining medium modulus was under different levels. Last, it was found that, with the confining medium modulus ascending, the critical influence diameter gradually dropped.


2011 ◽  
Vol 368-373 ◽  
pp. 448-451
Author(s):  
Wei Hong Xuan ◽  
Yong Wan ◽  
Yu Zhi Chen ◽  
Pan Xiu Wang

The construction technology and fundamental principle of a new kind of cast-in-situ reinforced concrete biaxial hollow slab with property of thermal-insulating is proposed in this paper. Compared with ordinary floor, the biaxial hollow slab is well load-carrying capacity in two-direction, light weight and thermal -insulating property.


2002 ◽  
Vol 124 (4) ◽  
pp. 874-877 ◽  
Author(s):  
Noah D. Manring ◽  
Robert E. Johnson ◽  
Harish P. Cherukuri

In this work, the operating sensitivity of the hydrostatic thrust bearing with respect to pressure-induced deformations will be studied in a stationary setting. Using the classical lubrication equations for low Reynold’s number flow, closed-form expressions are generated for describing the pressure distribution, the flow rate, and the load carrying capacity of the bearing. These expressions are developed to consider deformations of the bearing that result in either concave or convex shapes relative to a flat thrust surface. The impact of both shapes is compared, and the sensitivity of the flow rate and the load carrying capacity of the bearing with respect to the magnitude of the deformation is discussed. In summary, it is shown that all deformations increase the flow rate of the bearing and that concave deformations increase the load carrying capacity while convex deformations decrease this same quantity relative to a non-deformed bearing condition.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 79 ◽  
Author(s):  
Yan Zhou ◽  
Weimin Li ◽  
Benjamin Stump ◽  
Raynella Connatser ◽  
Sladjan Lazarevic ◽  
...  

Fuel and water contents are inevitable in automotive engine oils. This study intends to investigate the impact of the addition of gasoline (3–20%) and water (1%) on the lubricating performance of synthetic base oil (PAO), with or without an anti-wear additive (ZDDP), for a steel-cast iron contact. Fuel-added PAO showed an increase in the load carrying capacity. Oil electrical conductivity and total acid number (TAN) measurements showed slightly increased conductivity and marginally increased acidity at a higher fuel concentration. In contrast, an increased wear rate, proportional to the fuel concentration, was observed in a prolonged test with constant-loading. Results suggested that the fuel addition is a double-edged sword: reducing the scuffing risk by providing stronger surface adsorption and increasing the sliding wear rate by bringing down the oil viscosity. The PAO-water blend formed an emulsion and resulted in a significantly increased load-carrying capacity, again likely due to the higher polarity and possibly acidity. For the ZDDP-containing PAO, the addition of 1% water and 3% fuel generated 24% and 52% higher wear. The phosphate polymerization level was reduced on the worn surfaces by the introduction of water but the thickness of ZDDP tribofilm was not significantly affected.


Sign in / Sign up

Export Citation Format

Share Document