Northumberland Strait bridge: analysis techniques and results

1996 ◽  
Vol 23 (1) ◽  
pp. 86-97 ◽  
Author(s):  
Amin Ghali ◽  
Gamil Tadras ◽  
Paul H. Langohr

The Northumberland Strait at the Atlantic coast of Canada will be crossed by a 13 km bridge. The major part of the superstructure will consist of 44 spans, each of length 250 m and a box cross section of variable depth 4.5–14 m. The superstructure, divided into units of maximum length 192 m, will be produced in a yard by segmental casting and multistage prestressing. These units will be assembled at their final position on top of the piers. Each pier is composed of two pieces, also produced in the yard and connected on site by cast in situ concrete. This paper describes selected analysis problems and their solutions employed in the structural design. The analysis problems are concerned with (i) dynamic response to ice forces; (ii) movements of pier footings and stiffness of the subgrade; (iii) variation of stresses and deformations during construction and during the life of the structure, considering the effects of creep and shrinkage of concrete and relaxation of the prestressed steel; and (iv) thermal stresses. Key words: bridges, concrete, creep, prestress relaxation, segmental construction, shrinkage, strait crossing.

1989 ◽  
Vol 153 ◽  
Author(s):  
M.H. Rhee ◽  
J.C. Barry ◽  
W.A. Coghlan

AbstractFracture of iron-doped silicon has been studied using HREM. Fractures were introduced into cross section specimens of oxidized silicon using microhardness indents. A crack is extended using thermal stresses generated by the electron beam. The tip of the advancing crack is made up of two or more parallel sub-cracks. As the crack grows, one of these sub-cracks appears to dominate while the multiple crack front still exists at the tip. Also shear strain has been seen across the crack interface. The process appears to be much more complicated that existing models suggest.


Author(s):  
Charles W. Allen

With respect to structural consequences within a material, energetic electrons, above a threshold value of energy characteristic of a particular material, produce vacancy-interstial pairs (Frenkel pairs) by displacement of individual atoms, as illustrated for several materials in Table 1. Ion projectiles produce cascades of Frenkel pairs. Such displacement cascades result from high energy primary knock-on atoms which produce many secondary defects. These defects rearrange to form a variety of defect complexes on the time scale of tens of picoseconds following the primary displacement. A convenient measure of the extent of irradiation damage, both for electrons and ions, is the number of displacements per atom (dpa). 1 dpa means, on average, each atom in the irradiated region of material has been displaced once from its original lattice position. Displacement rate (dpa/s) is proportional to particle flux (cm-2s-1), the proportionality factor being the “displacement cross-section” σD (cm2). The cross-section σD depends mainly on the masses of target and projectile and on the kinetic energy of the projectile particle.


Author(s):  
C. Ramachandra ◽  
B.M. Sweety ◽  
U.G. Chandan ◽  
D. Jaypal ◽  
Sarat Kumar Dash ◽  
...  

Abstract Removal of polyimide layer after decapsulation of IC package is essential for many of the failure analysis techniques. An alternative method for polyimide removal is described in this paper. The method suggests appropriate modification of dual acid decapsulation system for this purpose. Device integrity is verified after removal of polyimide layer. This method becomes promising for devices which are sensitive / vulnerable for exposure to plasma.


2021 ◽  
pp. 000370282199044
Author(s):  
Wubin Weng ◽  
Shen Li ◽  
Marcus Aldén ◽  
Zhongshan Li

Ammonia (NH3) is regarded as an important nitrogen oxides (NOx) precursor and also as an effective reductant for NOx removal in energy utilization through combustion, and it has recently become an attractive non-carbon alternative fuel. To have a better understanding of thermochemical properties of NH3, accurate in situ detection of NH3 in high temperature environments is desirable. Ultraviolet (UV) absorption spectroscopy is a feasible technique. To achieve quantitative measurements, spectrally resolved UV absorption cross-sections of NH3 in hot gas environments at different temperatures from 295 K to 590 K were experimentally measured for the first time. Based on the experimental results, vibrational constants of NH3 were determined and used for the calculation of the absorption cross-section of NH3 at high temperatures above 590 K using the PGOPHER software. The investigated UV spectra covered the range of wavelengths from 190 nm to 230 nm, where spectral structures of the [Formula: see text] transition of NH3 in the umbrella bending mode, v2, were recognized. The absorption cross-section was found to decrease at higher temperatures. For example, the absorption cross-section peak of the (6, 0) vibrational band of NH3 decreases from ∼2 × 10−17 to ∼0.5 × 10−17 cm2/molecule with the increase of temperature from 295 K to 1570 K. Using the obtained absorption cross-section, in situ nonintrusive quantification of NH3 in different hot gas environments was achieved with a detection limit varying from below 10 parts per million (ppm) to around 200 ppm as temperature increased from 295 K to 1570 K. The quantitative measurement was applied to an experimental investigation of NH3 combustion process. The concentrations of NH3 and nitric oxide (NO) in the post flame zone of NH3–methane (CH4)–air premixed flames at different equivalence ratios were measured.


2010 ◽  
Vol 89-91 ◽  
pp. 503-508 ◽  
Author(s):  
J. Sheng ◽  
U. Welzel ◽  
Eric J. Mittemeijer

The stress evolution during diffusion annealing of Ni-Cu bilayers (individual layer thicknesses of 50 nm) was investigated employing ex-situ and in-situ X-ray diffraction measurements. Annealing at relatively low homologous temperatures (about 0.3 - 0.4 Tm) for durations up to about 100 hours results in considerable diffusional intermixing, as demonstrated by Auger-electron spectroscopy investigations (in combination with sputter-depth profiling). In addition to thermal stresses due to differences of the coefficients of thermal expansion of layers and substrate, tensile stress con-tributions in the sublayers arise during the diffusion anneals. The obtained stress data have been discussed in terms of possible mechanisms of stress generation. The influence of diffusion on stress development in the sublayers of the diffusion couple during heating and isothermal annealing was investigated by comparing stress changes in the bilayer system with corresponding results obtained under identical conditions for single layers of the components in the bilayer system. The specific residual stresses that emerge due to diffusion between the (sub)layers in the bilayer could thereby be identified.


1970 ◽  
Vol 10 (02) ◽  
pp. 145-163 ◽  
Author(s):  
H.L. Beckers ◽  
G.J. Harmsen

Abstract This paper gives a theoretical description of the various semisteady states that may develop if in an in-situ combustion process water is injected together with the air. The investigation bas been restricted to cases of one-dimensional flow without heat losses, such as would occur in a narrow, perfectly insulated tube. perfectly insulated tube. Different types of behavior can be distinguished for specific ranges of the water/air injection ratio. At low values of this ratio the injected water evaporates before it reaches the combustion zone, while at high values it passes through the combustion zone without being completely evaporated, but without extinguishing combustion. At intermediate values and at sufficiently high fuel in which all water entering the combustion zone evaporates before leaving it. Formulas are presented that give the combustion zone velocity as a function of water/air injection ratio for each of the possible situations. Introduction In-situ combustion of part of the oil in an oil-bearing formation has become an established thermal-recovery technique, even though its economic prospects are limited by inherent technical drawbacks. The process has been extensively investigated both in the laboratory and in the field, while theoretical studies have also been made. The latter studies showed how performance was affected by various physical and chemical phenomena, such as conduction and convection of phenomena, such as conduction and convection of heat, reaction rate and phase changes. The degree of simplification determined whether these studies were of an analytical or a numerical nature. Recently an improvement of the process has been proposed. This modification involves the proposed. This modification involves the injection of water together with the air. The water serves to recuperate the heat stored in the burned-out sand, which would otherwise be wasted. This heat is now used to evaporate water. The steam thus formed condenses downstream of the combustion zone, where it displaces oil. At sufficiently high water-injection rates unevaporated water is bound to enter the combustion zone because more heat is required for complete evaporation than is available in the hot sand. Experiments showed that even under these conditions combustion is maintained. The improvement consists in a lower oxygen consumption per barrel of oil displaced and lower combustion-zone temperatures. This paper gives a theoretical description of this so-called wet-combustion process as described by Dietz and Weijdema. The prime object is to answer the basic question whether at any water/air injection ratio this process can be steady so that combustion does not die out. This objective justifies a number of assumptions that do not entirely correspond to physical reality, but that owe necessary for a physical reality, but that owe necessary for a tractable analytical treatment. This treatment is limited to the following idealized conditions.The process occurs in a perfectly insulated cylinder of unit cross-sectional area and infinite length.The Hudds are homogeneously distributed over the cross-section of the cylinder.Exchange of heat between the fluid phases and between fluids and matrix is instantaneous, so that in any cross-section the fluid phases are in equilibrium and the temperatures of fluids and porous matrix are the same. porous matrix are the same.Pressure chops over distances of interest are small compared with the pressure itself. (Pressure is taken to be constant.)Injection rates are constant, and a steady state has already been obtained. The second assumption implies that no segregation of liquid and gas occurs. Experimentally this might be achieved by using small-diameter tubes, where segregation is largely compensated by capillarity. SPEJ P. 145


1964 ◽  
Vol 42 (12) ◽  
pp. 1635-1652 ◽  
Author(s):  
Lee A. Paine ◽  
Gideon Schwarzbart ◽  
William G. O'Regan

Regression analysis techniques were applied to an estimation of three-dimensional surfaces representing the growth of Fomes pini as a function of time and temperature. These methods were judged to be valuable in their economy of data and in their provision of readily available plotting points for any desired cross section of the surface.The growth pattern of F. pini taken from Douglas fir was distinct from that of the form of F. pini found on nearby white fir. Growth of isolates from Douglas fir was more than twice that of white fir isolates after 18 days at near-optimum temperatures on malt agar. Estimates of growth trends and optimum temperatures were examined both for individual isolates of F. pini and for averages of isolates from the two host species, Douglas fir and white fir. Results suggest that chronological changes in the optimum temperature may be affected by the relation between the storage temperature preceding initial measurements and the terminal optimum temperature.


2014 ◽  
Vol 553 ◽  
pp. 847-852 ◽  
Author(s):  
Benjamin J. Morrell ◽  
David J. Munk ◽  
Gareth A. Vio ◽  
Dries Verstraete

The design and optimization of hypersonic aircraft is severely impacted by the high temperatures encountered during flight as they can lead to high thermal stresses and a significant reduction in material strength and stiffness. This reduction in rigidity of the structure requires innovative structural concepts and a stronger focus on aeroelastic deformations in the early design and optimisation of the aircraft structure. This imposes the need for a closer coupling of the aerodynamic and structural design tools than is current practice. The paper presents the development of a multi-disciplinary, closely coupled optimisation suite for hypersonic aircraft. An overview of the setup and structure of the optimization suite is given and the integration between the Tranair solver, used to determine the aerodynamic loads and temperatures, and MSC/NASTRAN, used for the structural sizing and design, will be given.


Sign in / Sign up

Export Citation Format

Share Document