Characterization and use of pulp mill fly ash and lime by-products as road construction amendments

2000 ◽  
Vol 27 (3) ◽  
pp. 581-593 ◽  
Author(s):  
Hongde Zhou ◽  
Daniel W Smith ◽  
David C Sego

Fly ash and lime by-products are the two main waste streams generated by the pulp and paper industry. Traditionally, these wastes are disposed of either in surface impoundment or landfills. Greater environmental concerns and limited land availability have made these disposal practices increasingly unacceptable and costly. Thus, the objective of this study was to determine the feasibility of beneficial utilization alternatives with emphasis on their use as road construction amendment materials based on technical, economical, and environmental considerations. The experiments were conducted to comprehensively characterize the chemical, physical, engineering, and environmental properties for both waste samples and their mixtures prepared with local soils at different curing conditions. Field road tests were then conducted to verify and assess the performance of the mixtures in terms of load bearing capacity, serviceability, and compaction. The results showed that pulp mill wastes would have little adverse environmental impact and could be used as road construction amendments to improve soil strength and reduce deformation. This improvement was significantly affected by soil types, moisture contents, and waste addition rates. During waste-soil amendment, the metal leachability would be further reduced by the occurrence of solidification processes.Key words: wood ash, fly ash, lime by-products, solid waste management, pulp mill waste, waste utilization, leaching tests.

2015 ◽  
Vol 1124 ◽  
pp. 177-182
Author(s):  
Vit Cerný

Combustion of coal creates a high amount of by-products in heat power plants. The largest share occupies fly ash as solid mineral residuals. Global pressure grows currently for the use of energy by-products. Utilization as a raw material for production of artificial sintered aggregate is one of the ways to make optimal use of even low-quality fly ash. Environmental and economic reasons lead currently to trying to upgrade the technology, which will fully use of the principle of self-sintering process based on content of combustible substances.The amount of combustible substances is today increasing by coal as a primary and finite resource. There is also best way for utilization of industrial wastes that contain a suitable share of combustible substances for ensure the smooth running of sintering.The paper deals with laboratory verification of selected industrial wastes as a correction component in the sintered aggregate production technology. As an alternative raw materials were selected coal tailings, sludge from paper industry, sludge from waste water treatment plant and fly ash from municipal waste incineration plant. The aim of the study was to investigate the effect of corrective components to the quality of the resulting sintered aggregates.


2021 ◽  
Vol 13 (8) ◽  
pp. 4119
Author(s):  
Jorge Suárez-Macías ◽  
Juan María Terrones-Saeta ◽  
Francisco Javier Iglesias-Godino ◽  
Francisco Antonio Corpas-Iglesias

The road construction sector is one of the most raw material-intensive sectors in existence. As a result, it has a significant impact on the environment. For this reason, there are several research projects in which industrial by-products are used as raw materials. In turn, energy production from biomass combustion is considered to be one of the most promising energy sources. However, this type of energy produces a number of wastes that need to be treated, such as biomass bottom ash. This research evaluates the properties of biomass bottom ash for use as a filler in bituminous mixtures and quantifies the environmental advantages of its use. For this purpose, the chemical composition of the ashes was analysed and their properties were physically characterised to confirm their suitability as a filler. Subsequently, the advantages of its processing compared to limestone filler, lime, or cement were calculated with SimaPro software. The results showed acceptable properties of biomass bottom ash for use as a filler, as well as a drastic reduction in the environmental impact of its processing. In short, this research presents the basis for the development of further bituminous mixtures with biomass bottom ash, reducing the extraction of raw materials and avoiding landfill disposal.


2013 ◽  
Vol 10 (3) ◽  
pp. 426-431

The final effluents from pulp and paper industry, even after biological treatment, often contain a plethora of unwanted by-products, which confer them colour and toxic characteristics. The aim of this work was to promote degradation of organic matter and remove colour by contacting fungi Pleurotus sajor caju or P. ostreatus with effluents from kraft pulp mill after treatment by an activated sludge process. Absorbance reduction of 57 and 76 % was observed after 14 days of treatment of final effluent with glucose by P. sajor caju, at 400 and 460 nm, respectively. Lower values of absorbance reduction were observed in final effluent with additives and inoculated with the same species (22 to 29%). Treatment with P. ostreatus was more efficient in the effluent with additives, 38.9 to 43.9% of reduction. Higher growth rate of P. sajor caju was observed in the effluent with glucose. Biological treatment resulted in 65-67% reduction of COD after 14 days revealing no differences for each effluent composition and inoculated species. Profiles of composition of organic compounds obtained by GC-MS showed no significant differences between the two effluents treated with P. sajor caju or P. ostreatus, but longer incubation time reflected higher reduction of organic compounds.


2019 ◽  
Vol 18 (8) ◽  
pp. 1781-1788
Author(s):  
Vladana N. Rajakovic-Ognjanovic ◽  
Milica Karanac ◽  
Jasna Smolar ◽  
Ana Petkovsek ◽  
Maja Dolic ◽  
...  

1992 ◽  
Vol 26 (1-2) ◽  
pp. 407-415 ◽  
Author(s):  
D. A. Barton ◽  
J. J. McKeown ◽  
W. Chudyk

A model of organic compound removal by biological wastewater treatment processes receiving pulp and paper industry wastewaters has been developed and initial model verification performed at a single mill site. This paper presents the results of further model verification conducted at multiple mill sites, including replication of the original site. In addition, VOC losses at other unit processes are quantified. Activated sludge basin chloroform volatilization rates are predicted to within twelve percent of the measured rates. Predicted overall methanol removals are consistent with observed removals although difficulties encountered during off-gas sampling preclude determination of the extent of removal due to volatilization.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 563
Author(s):  
Łukasz Skotnicki ◽  
Jarosław Kuźniewski ◽  
Antoni Szydło

The reduction in natural resources and aspects of environmental protection necessitate alternative uses of waste materials in the area of construction. Recycling is also observed in road construction where mineral–cement emulsion (MCE) mixtures are applied. The MCE mix is a conglomerate that can be used to make the base layer in road pavement structures. MCE mixes contain reclaimed asphalt from old, degraded road surfaces, aggregate improving the gradation, asphalt emulsion, and cement as a binder. The use of these ingredients, especially cement, can cause shrinkage and cracks in road layers. The article presents selected issues related to the problem of cracking in MCE mixtures. The authors of the study focused on reducing the cracking phenomenon in MCE mixes by using an innovative cement binder with recycled materials. The innovative cement binder based on dusty by-products from cement plants also contributes to the optimization of the recycling process in road surfaces. The research was carried out in the field of stiffness, fatigue life, crack resistance, and shrinkage analysis of mineral–cement emulsion mixes. It was found that it was possible to reduce the stiffness and the cracking in MCE mixes. The use of innovative binders will positively affect the durability of road pavements.


2021 ◽  
Vol 323 ◽  
pp. 8-13
Author(s):  
Jadambaa Temuujin ◽  
Damdinsuren Munkhtuvshin ◽  
Claus H. Ruescher

With a geological reserve of over 170 billion tons, coal is the most abundant energy source in Mongolia with six operating thermal power stations. Moreover, in Ulaanbaatar city over 210000 families live in the Ger district and use over 800000 tons of coal as a fuel. The three thermal power plants in Ulaanbaatar burn about 5 million tons of coal, resulting in more than 500000 tons of coal combustion by-products per year. Globally, the ashes produced by thermal power plants, boilers, and single ovens pose serious environmental problems. The utilization of various types of waste is one of the factors determining the sustainability of cities. Therefore, the processing of wastes for re-use or disposal is a critical topic in waste management and materials research. According to research, the Mongolian capital city's air and soil quality has reached a disastrous level. The main reasons for air pollution in Ulaanbaatar are reported as being coal-fired stoves of the Ger residential district, thermal power stations, small and medium-sized low-pressure furnaces, and motor vehicles. Previously, coal ashes have been used to prepare advanced materials such as glass-ceramics with the hardness of 6.35 GPa, geopolymer concrete with compressive strength of over 30 MPa and zeolite A with a Cr (III) removal capacity of 35.8 mg/g. Here we discuss our latest results on the utilization of fly ash for preparation of a cement stabilized base layer for paved roads, mechanically activated fly ash for use in concrete production, and coal ash from the Ger district for preparation of an adsorbent. An addition of 20% fly ash to 5-8% cement made from a mixture of road base gave a compressive strength of ~ 4MPa, which exceeds the standard. Using coal ashes from Ger district prepared a new type of adsorbent material capable of removing various organic pollutants from tannery water was developed. This ash also showed weak leaching characteristics in water and acidic environment, which opens up an excellent opportunity to utilize.


Sign in / Sign up

Export Citation Format

Share Document