Investigation of white-rot fungi for the conversion of poplar into a potential feedstuff for ruminants

1983 ◽  
Vol 29 (4) ◽  
pp. 457-463 ◽  
Author(s):  
A. E. Reade ◽  
R. E. McQueen

Five isolates of wood-rotting fungi were compared for their ability to increase the digestibility of poplar shavings. Homogenates of the fungi were inoculated into mixtures of 25 g of shavings and 100 mL of supplementary nutrient solution and incubated at 25 °C. The in vitro rumen digestibility of the products increased from 30% at the start of the fermentation to maxima of 72% with Polyporus anceps after 8 weeks, 64% with Ganoderma applanatum and 62% with Phanerochaete chrysosporium after 4 weeks, 61% with Polyporus versicolor after 3 weeks, and 42% with Fomitopsis ulmarius after 4 weeks. Fibre analysis showed a decrease in lignin as digestibility increased. Loss of carbohydrates occurred in all fermentations and continued after lignin loss ceased. Dry matter yield at the time of maximum digestibility ranged from 80 to 94% of the original dry matter. The highest digestibilities attained were similar to those of conventional roughage feeds for ruminants. This shows that this fermentation could form the basis of a practical system for converting poplar into a feedstuff.

2016 ◽  
Vol 75 (1) ◽  
Author(s):  
Laksmita Prima SANTI ◽  
Lisdar Idwan SUDIRMAN ◽  
Didiek Hadjar GOENADI

SummaryFungal treatment by using white-rot fungito reduce a wide variety of herbicide com-pounds is a specialized bioremediation pro-cess. A laboratory experiment was conductedto determine the ability of Phanerochaetechrysosporium, Ceriporiopsis subvermispora,and Pleurocybella porrigens and seven white-rot fungi isolated from a native of tropicalenvironment to grow on yeast malt extractglucose (YMG) agar containing highconcentration of (I) 2,4-dichlorophenoxy aceticacid, (R) glyphosate, and (G) paraquat. Thedata indicated that P. chrysosporium couldgrow on YMG media containing 5000 ppm of(I) 2,4-D, whereas BPBPI 02/04 isolate onYMG 250 ppm of (R) glyphosate or (G)paraquat. Relative values of growth inhibitionof these fungi are 81.1; 27.8; and 50.0%respectively. Biodegradation capability ofherbicides by candidate inoculants in soil-sandmedia was also determined in greenhouseexperiment by using peanut, sorghum, corn,and Borreria alata as bio-indicators. Peanutand B. alata were found to be the bestresponsive seedlings as bio-indicator on thepresence of (I) 2,4-D herbicide in soil-sandmedia.RingkasanTeknologi bioremediasi dengan fungipelapuk putih (FPP) digunakan untuk me-reduksi sejumlah senyawa herbisida. Kegiatanpenelitian yang dilakukan di laboratoriumbertujuan untuk mengetahui kemampuan tum-buh Phanerochaete chrysosporium, Ceripo-riopsis subvermispora, dan Pleurocybellaporrigens serta tujuh isolat FPP yang diperolehdari lingkungan tropik secara in vitro padamedium agar yeast malt extract glucose(YMG) yang mengandung (I) 2,4-dikloro-fenoksi asam asetat, (R) glifosat, dan (G)parakuat konsentrasi tinggi. Dari data yangdiperoleh, diketahui bahwa Ph. chrysosporiummemiliki kemampuan tumbuh dalam mediumpadat YMG yang mengandung 5000 ppm (I)2,4-D dan isolat BPBPI 02/04 pada 250 ppm(R) glifosat dan (G) parakuat dengan nilaihambatan pertumbuhan relatif terhadap kontrol(HPR) masing-masing 81,1; 27,8; dan 50,0%.Pengujian isolat terpilih terhadap kemampuanmendegradasi herbisida di dalam mediumtanah dan pasir juga dilakukan di rumah kacadengan menggunakan kacang tanah, sorgum,jagung, dan Boreria alata sebagai bioindikator.Kacang tanah dan B. alata memberikan responterbaik terhadap keberadaan herbisida (I) 2,4-Ddi dalam medium tanah dan pasir .


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 415-415
Author(s):  
Edgar García-Orozco ◽  
Gabriela Leyva-Olvera ◽  
Hermilo Leal-Lara ◽  
Atmir Romero-Pérez ◽  
Luis Corona ◽  
...  

Abstract Corn stover (CS) is an agricultural byproduct available in many countries for animal feed. However, due to its high lignin (L) and neutral detergent fiber (NDF) content it has a low digestibility. The production of edible fungi, using CS-based substrate, is an option to improve CS digestibility, as fungi can break down the cross-links between cell wall components. The aim of the study was to evaluate the effect of fungal treated CS from 17 species of white rot fungi: Lentinula edodes (L5, L9, LC,L15), Hericium sp (Heri) and Pleurotus djamour (Pd-Pro, Pd-UTMR) Pleurotus eryngii (Pe-PQ, Pe-MB), Pleurotus ostreatus (Po-IE202, Po-IAP, Po-Psma, Po-P14, Po-POS, Po-JP, Po-P38, Po-Sfco) on crude protein (CP), L and NDF content and in vitro dry matter digestibility (IVDMD). The composition of the substrate (C) was CS (80.55%), ground sorghum (5.98%) wheat bran (3.89%), corn gluten (4.89%), CaCO3 (3.89%) and CaSO4 (0.89%). The variables were analyzed as a completely randomized design using the MIXED procedure of SAS. Means were compared with the Tukey procedure. A significant increase (P < 0.05) of CP from 10% (Po-P38) to 69% (LC) was observed, except for Pd-UTMR, Po-IAP, Po-Psma, Po-P38 and Po-Sfco that showed similar content to the C. There was a decrease (P < 0.05) in the NDF from 10% (Heri) to 34% (L15) in relation to the C. The L content did not decrease in comparison with the C (P < 0.05). Furthermore, 13 treatments significantly increased (P < 0.05) IVDMD from 24% (Po-P14) to 42% (Pd-UTMR), except for Po-P38, Po-JP, LC and Heri in comparison with the C. In conclusion, the cultivation of white rot fungi, such as Pd-UTMR, Po-IAP, Po-Psma, LC, L9 and L15 using CS as substrate, improved CP content and increased IVDMD of CS, suggesting that which can be a good alternative for feeding ruminants.


2016 ◽  
Vol 75 (1) ◽  
Author(s):  
Laksmita Prima SANTI ◽  
Lisdar Idwan SUDIRMAN ◽  
Didiek Hadjar GOENADI

SummaryFungal treatment by using white-rot fungito reduce a wide variety of herbicide com-pounds is a specialized bioremediation pro-cess. A laboratory experiment was conductedto determine the ability of Phanerochaetechrysosporium, Ceriporiopsis subvermispora,and Pleurocybella porrigens and seven white-rot fungi isolated from a native of tropicalenvironment to grow on yeast malt extractglucose (YMG) agar containing highconcentration of (I) 2,4-dichlorophenoxy aceticacid, (R) glyphosate, and (G) paraquat. Thedata indicated that P. chrysosporium couldgrow on YMG media containing 5000 ppm of(I) 2,4-D, whereas BPBPI 02/04 isolate onYMG 250 ppm of (R) glyphosate or (G)paraquat. Relative values of growth inhibitionof these fungi are 81.1; 27.8; and 50.0%respectively. Biodegradation capability ofherbicides by candidate inoculants in soil-sandmedia was also determined in greenhouseexperiment by using peanut, sorghum, corn,and Borreria alata as bio-indicators. Peanutand B. alata were found to be the bestresponsive seedlings as bio-indicator on thepresence of (I) 2,4-D herbicide in soil-sandmedia.RingkasanTeknologi bioremediasi dengan fungipelapuk putih (FPP) digunakan untuk me-reduksi sejumlah senyawa herbisida. Kegiatanpenelitian yang dilakukan di laboratoriumbertujuan untuk mengetahui kemampuan tum-buh Phanerochaete chrysosporium, Ceripo-riopsis subvermispora, dan Pleurocybellaporrigens serta tujuh isolat FPP yang diperolehdari lingkungan tropik secara in vitro padamedium agar yeast malt extract glucose(YMG) yang mengandung (I) 2,4-dikloro-fenoksi asam asetat, (R) glifosat, dan (G)parakuat konsentrasi tinggi. Dari data yangdiperoleh, diketahui bahwa Ph. chrysosporiummemiliki kemampuan tumbuh dalam mediumpadat YMG yang mengandung 5000 ppm (I)2,4-D dan isolat BPBPI 02/04 pada 250 ppm(R) glifosat dan (G) parakuat dengan nilaihambatan pertumbuhan relatif terhadap kontrol(HPR) masing-masing 81,1; 27,8; dan 50,0%.Pengujian isolat terpilih terhadap kemampuanmendegradasi herbisida di dalam mediumtanah dan pasir juga dilakukan di rumah kacadengan menggunakan kacang tanah, sorgum,jagung, dan Boreria alata sebagai bioindikator.Kacang tanah dan B. alata memberikan responterbaik terhadap keberadaan herbisida (I) 2,4-Ddi dalam medium tanah dan pasir .


2012 ◽  
Vol 12 (2) ◽  
pp. 1-6
Author(s):  
Wardhana Suryapratama ◽  
Fransisca Maria Suhartati

The influence of rice straw fermentation using white rot fungi and saccharomyces cerevisiae supplementation on in vitro nutrient digestibilityABSTRACT. An experiment to investigate the effect of rice straw fermented using white rot fungi and Saccharomyces cerevisiae supplementation on nutrient digestibility In Vitro had been implemented in two phases. The first experiments undertaken to make rice straw fermentation, using experimental methods with a Completely Randomized Design. As the treatment were White rot fungi (Phanerochaete chrysosporium) 0, 5 and 10 g/kg of rice straw (DM basis). Each treatment was repeated six times, so there are 18 experimental units. The variables measured included nutrient content of rice straw. A second experiment carried out in vitro to test the best rice straw fermentation results of the first experiment, using experimental methods, with a Completely Randomized Design. As the treatment were the supplementation of Saccharomyces cerevisiae (0, 2, 4% of the weight of fermented rice straw, DM basis). The variables measured included digestibility of dry matter, organic matter, cellulose and lignin digestibility of feed containing fermented straw. The data obtained were analyzed using analysis of variance test followed by Orthogonal Polynomials. The results can be concluded that the fermented rice straw using Phanerochaete chrysosporium 10 g/kg of rice straw is the best nutrient content. Saccharomyces cerevisiae supplementation on feed that contains fermented rice straw using Phanerochaete chrysosporium 10 g/kg rice straw is 2%.


Toxins ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 49 ◽  
Author(s):  
Maria Teresa Branà ◽  
Lucrezia Sergio ◽  
Miriam Haidukowski ◽  
Antonio F. Logrieco ◽  
Claudio Altomare

Ligninolytic enzymes from white-rot fungi, such as laccase (Lac) and Mn-peroxidase (MnP), are able to degrade aflatoxin B1 (AFB1), the most harmful among the known mycotoxins. The high cost of purification of these enzymes has limited their implementation into practical technologies. Every year, tons of spent mushroom substrate (SMS) are produced as a by-product of edible mushroom cultivation, such as Pleurotus spp., and disposed at a cost for farmers. SMS may still bea source of ligninolytic enzymes useful for AFB1 degradation. The in vitro AFB1-degradative activity of an SMS crude extract (SMSE) was investigated. Results show that: (1) in SMSE, high Lac activity (4 U g−1 dry matter) and low MnP activity (0.4 U g−1 dry matter) were present; (2) after 1 d of incubation at 25 °C, the SMSE was able to degrade more than 50% of AFB1, whereas after 3 and 7 d of incubation, the percentage of degradation reached the values of 75% and 90%, respectively; (3) with increasing pH values, the degradation percentage increased, reaching 90% after 3 d at pH 8. Based on these results, SMS proved to be a suitable source of AFB1 degrading enzymes and the use of SMSE to detoxify AFB1 contaminated commodities appears conceivable.


1985 ◽  
Vol 63 (2) ◽  
pp. 337-339 ◽  
Author(s):  
Elmer L. Schmidt

Influences of eight saturated aliphatic acids (C5–C10, C12, and C16) on basidiospores of four isolates of wood-decay fungi (Poria tenuis and Trametes hispida, white rot fungi, and two isolates of the brown rot fungus Gloeophyllum trabeum) were observed in vitro. Spore responses after 24 h on malt extract agar containing 10, 102 or 103 ppm of each acid included normal germination, delay of germ tube emergence, vacuolation and degeneration of spore cytoplasm, and prevention of germ tube development without spore destruction. Acids of chain length C5–C10 prevented spore germination and killed spores of all fungi at concentrations of 20–50 ppm in media, whereas other acids tested were less active. Spore germination assay of decay fungi may prove useful as a screening tool to compare potency of wood preservatives.


1986 ◽  
Vol 64 (8) ◽  
pp. 1611-1619 ◽  
Author(s):  
James E. Adaskaveg ◽  
Robert L. Gilbertson

The in vitro wood decay abilities of Ganoderma lucidum (W. Curt.: Fr.) Karst. and G. tsugae Murr. were studied using the following woods in agar block decay chambers: Vitis vinifera L., Quercus hypoleucoides A. Camus, Prosopis velutina Woot., Abies concolor (Gord. & Glend.) Lindl. ex. Hildebr., and Pseudotsuga menziesii (Mirb.) Franco. Grape wood lost the most weight while mesquite the least. Ganoderma lucidum isolates generally caused greater weight loss of all woods than did G. tsugae isolates. The range of the percent weight losses varied with the wood. Both Ganoderma species caused simultaneous decay in all woods. However, chemical analyses of the decayed blocks indicated that selective delignification by both species also occurred in grape and white fir blocks. Chemical analysis of the decayed oak blocks indicated the percentages of lignin and holocellulose were not statistically different from the controls. However, there was a trend towards delignification. The analyses of the Douglas-fir blocks indicated only simultaneous decay. Scanning electron microscopy demonstrated selective delignification and simultaneous decay of all woods tested. However, the extent of the delignification differed among the wood species. Delignification appeared mainly in areas of tracheids or fiber tracheids, while the rays were simultaneously decayed.


Genetics provides an approach to the analysis of the complex function of lignin biodegradation, through the isolation of mutants and the creation of gene libraries for the identification of genes and their products. However, white-rot fungi (for example, Phanerochaete chrysosporium ) have not so far been analysed from this point of view, and there is the challenge of establishing such genetics. P. chrysosporium is convenient experimentally because relatively few genes are switched on at the onset of ligninolytic activity. We describe the isolation of clones carrying genes expressed specifically in the ligninolytic phase, the development of a general strategy for mapping such clones, and the elucidation of the mating system of this organism. Another objective is the development of methods for transforming DNA into P. chrysosporium . This would allow the use of site-directed mutagenesis to analyse the functioning of ligninases, and the control of expression of the corresponding genes. The use of genetic crosses for strain improvement and the identification of components of the system are also discussed.


1969 ◽  
Vol 98 (2) ◽  
pp. 169-177
Author(s):  
Rafael Ramos-Santana ◽  
Yamil Quijano-Cabrera ◽  
Raúl Macchiavelli

An experiment was conducted to evaluate the dry matter yield and quality performance of Maralfalfa forage obtained at six harvest intervals (HI; 40, 50, 60, 70, 80, 90 d) on three dairies in northern Puerto Rico during the long day season. The 40-day harvest interval was significantly (P < 0.05) inferior in dry matter yield to those of 60, 80, and 90 days; no significant (P < 0.05) differences in yield were observed among intervals of 40, 50 and 70 days. The 40-day interval showed the highest forage quality as indicated by crude protein content, digestibility in vitro of dry matter and neutral detergent fiber, and estimated net energy, index of relative forage quality and theoretical milk production. Although significant (P < 0.05) differences were observed in some of these criteria between 40- and 50-day harvest intervals, the latter maintained a good nutritional value in contrast to drastic losses in quality observed with the longer harvest intervals under study. The simple regression equations between digestibility in vitro of dry matter and of neutral detergent fiber versus harvest interval showed a decrease in digestibility of 2.7 and 3.0 percentage points for each additional 10 days of harvest interval, respectively.


1992 ◽  
Vol 1 (5) ◽  
pp. 491-497
Author(s):  
Abate Tedla ◽  
Helena Airaksinen ◽  
M. A. Mohamed-Saleem

The influence of the improved drainage broadbed and furrow (BBF), as opposed to the traditional flat seedbed over the growing season on the dry matter yield and nutritive value of Avena sativa, Vigna unguiculata, Lablab purpureus, Vida dasycarpa, Trifolium steudneri and Sesbania sesban were studied on Vertisol. Up to 7 t/ha dry matter yield was recorded for Avena sativa and Lablab purpureus when planted on Vertisols with improved drainage. Dry matter yield of forage crops also increased with advance in stage of maturity or subsequent harvests. On both improved and traditional flat seedbed methods, the chemical analysis of forage crops showed similar declines in crude protein content and in vitro dry matter digestibility (IVDMD) levels as the maturity of forage crops progressed.


Sign in / Sign up

Export Citation Format

Share Document