Ultrastructure of basidiospore germination and development of intrasporal hyphae in the snow mold, Coprinus psychromorbidus

1991 ◽  
Vol 37 (9) ◽  
pp. 697-702 ◽  
Author(s):  
J. A. Traquair ◽  
E. G. Kokko ◽  
E. R. Moskaluk

Basidiospores of Coprinus psychromorbidus, produced for the first time in axenic culture, were germinated on potato dextrose agar in slide culture. After incubation for 24 h, all stages of germination, the development of monokaryotic and dikaryotic hyphae, and the invasion of ungerminated basidiospores were observed using standard transmission electron microscopy. Each basidiospore has a complex, layered wall and dense cell contents containing one nucleus and the normal complement of organelles, plus lipids and dense-body vacuoles. The germ tube emerges through an apical pore in the basidiospore wall. Some abnormal ungerminated spores are invaded by adjacent germling hyphae, which enter through the pore and the hilum. Key words: basidiospore, transmission electron microscopie, invasion.

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


2019 ◽  
Vol 1 (4) ◽  
pp. 1581-1588 ◽  
Author(s):  
S. I. Sadovnikov ◽  
E. Yu. Gerasimov

For the first time, the α-Ag2S (acanthite)–β-Ag2S (argentite) phase transition in a single silver sulfide nanoparticles has been observed in situ using a high-resolution transmission electron microscopy method in real time.


1997 ◽  
Vol 04 (03) ◽  
pp. 559-566 ◽  
Author(s):  
J. M. GIBSON ◽  
X. CHEN ◽  
O. POHLAND

Transmission electron microscopy is uniquely able to extend techniques for imaging free surface steps to the buried interface regime, without significant loss of detail. Two mechanisms for imaging surface and interfacial steps by transmission electron microscopy are described. They are thickness contrast and strain contrast. The former reveals the position and approximate height of steps, whereas the latter detects stress fields which are commonly associated with steps. The basis for each of these methods is elaborated, and preliminary results are shown for step images at Si/SiO2 interfaces, where measurable stress fields have been directly detected for the first time.


NANO ◽  
2013 ◽  
Vol 08 (05) ◽  
pp. 1350052 ◽  
Author(s):  
BIN ZENG ◽  
XIAOHUA CHEN ◽  
XUTAO NING ◽  
CHUANSHENG CHEN ◽  
HUI LONG

Novel flower-like composite architecture was successfully synthesized by spray drying and post-calcinating method for the first time. Scanning electron microscopy and transmission electron microscopy observations confirmed that reduced graphene oxides/carbon nanotubes hybrid (rGO/CNTs) formed a flower-like micrometer structure and Cu2O , CuO ( Cu x O , x = 1 or 2) nanoparticles were decorated inside them. The photocatalytic properties were further investigated by evaluating the photodegradation of a pollutant methyl orange (MO). The experimental results indicated that this novel architecture enhanced photocatalytic performance with 96.2% decomposition of MO after 25 min in the presence of H 2 O 2 under visible light irradiation, which was much higher than that of Cu x O powders (33.2%). This could be attributed to the more efficient adsorption of MO molecules on flower-like rGO/CNTs and provide a high concentration of MO near to the Cu x O nanoparticles, thus promoting the photocatalytic degradation process.


2003 ◽  
Vol 93 (8) ◽  
pp. 966-975 ◽  
Author(s):  
Jorge T. de Souza ◽  
Christine Arnould ◽  
Chrystel Deulvot ◽  
Philippe Lemanceau ◽  
Vivienne Gianinazzi-Pearson ◽  
...  

The antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) plays an important role in the suppression of plant pathogens by several strains of Pseudomonas spp. Based on the results of this study, there is variation within and among Pythium spp. to 2,4-DAPG. Also, various propagules of Pythium ultimum var. sporangiiferum, that are part of the asexual stage of the life cycle, differ considerably in their sensitivity to 2,4-DAPG. Mycelium was the most resistant structure, followed by zoosporangia, zoospore cysts, and zoospores. Additionally, we report for the first time that pH has a significant effect on the activity of 2,4-DAPG, with a higher activity at low pH. Furthermore, the level of acetylation of phloroglucinols is also a major determinant of their activity. Transmission electron microscopy studies revealed that 2,4-DAPG causes different stages of disorganization in hyphal tips of Pythium ultimum var. sporangiiferum, including alteration (proliferation, retraction, and disruption) of the plasma membrane, vacuolization, and cell content disintegration. The implications of these results for the efficacy and consistency of biological control of plant-pathogenic Pythium spp. by 2,4-DAPG-producing Pseudomonas spp. are discussed.


2007 ◽  
Vol 7 (2) ◽  
pp. 530-534 ◽  
Author(s):  
Chunyi Zhi ◽  
Yoshio Bando ◽  
Guozhen Shen ◽  
Chengchun Tang ◽  
Dmitri Golberg

Adopting a wet chemistry method, Au and Fe3O4 nanoparticles were functionalized on boron nitride nanotubes (BNNTs) successfully for the first time. X-ray diffraction pattern and transmission electron microscopy were used to characterize the resultant products. Subsequently, a method was proposed to fabricate heterojunction structures based on the particle-functionalized BNNTs. As a demonstration, BNNT-carbon nanostructure, BNNT-ZnO and BNNT-Ga2O3 junctions were successfully fabricated using the functionalized particles as catalysts.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 881
Author(s):  
Ting Shi ◽  
Sébastien Livi ◽  
Jannick Duchet ◽  
Jean-François Gérard

In this work, silica microcapsules containing phosphonium ionic liquid (IL), denoted SiO2@IL, were successfully synthesized for the first time using the one step sol-gel method in IL/H20 emulsion. The morphologies of the obtained micron-size microcapsules, including their diameter distribution, were characterized using dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The thermal behavior of these microcapsules and the mass fraction of the encapsulated IL in the silica microcapsules were determined using thermogravimetric analysis, showing an excellent thermal stability (up to 220 °C) and highlighting that an amount of 20 wt.% of IL is contained in the silica microcapsules. In a second step, SiO2@IL microcapsules (1 wt.%) were dispersed into epoxy-amine networks to provide proof of concept of the ability of such microcapsules to act as healing agents as microcracks propagate into the epoxy networks.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 999
Author(s):  
Yi-An Chen ◽  
Kuo-Hsien Chou ◽  
Yi-Yang Kuo ◽  
Cheng-Ye Wu ◽  
Po-Wen Hsiao ◽  
...  

To the best of our knowledge, this report presents, for the first time, the schematic of the possible chemical reaction for a one-pot synthesis of Zn0.5Cd0.5Se alloy quantum dots (QDs) in the presence of low/high oleylamine (OLA) contents. For high OLA contents, high-resolution transmission electron microscopy (HRTEM) results showed that the average size of Zn0.5Cd0.5Se increases significantly from 4 to 9 nm with an increasing OLA content from 4 to 10 mL. First, [Zn(OAc)2]–OLA complex can be formed by a reaction between Zn(OAc)2 and OLA. Then, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) data confirmed that ZnO is formed by thermal decomposition of the [Zn(OAc)2]–OLA complex. The results indicated that ZnO grew on the Zn0.5Cd0.5Se surface, thus increasing the particle size. For low OLA contents, HRTEM images were used to estimate the average sizes of the Zn0.5Cd0.5Se alloy QDs, which were approximately 8, 6, and 4 nm with OLA loadings of 0, 2, and 4 mL, respectively. We found that Zn(OAc)2 and OLA could form a [Zn(OAc)2]–OLA complex, which inhibited the growth of the Zn0.5Cd0.5Se alloy QDs, due to the decreasing reaction between Zn(oleic acid)2 and Se2−, which led to a decrease in particle size.


2016 ◽  
Vol 60 (1) ◽  
pp. 87-96
Author(s):  
Atanu Bhattacharyya ◽  
Shashidhar Viraktamath ◽  
Fani Hatjina ◽  
Santanu Bhattacharyya ◽  
Bhaktibhavana Rajankar ◽  
...  

Abstract The presence of nanoparticles on the body of the honeybee Apis dorsata Fabricius, was investigated for the first time to better understand the bee’s behaviour. These have been observed by using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and confirmed by Atomic Force Microscopy (AFM). Our study clearly denotes that the Indian rock honey bee Apis dorsata possess calcium silicate and calcium phosphate nanoparticles on its body surface of 5-50 nm in diameter. In particular, the nanoparticles on the abdomen and thorax of A. dorsata have an average diameter of about 10 nanometers and they are smaller than those found on wings of the same bees which are about 20 nanometers. The nanoparticles found are different of the ones previously observed on honey bees or other insects. The origin and role of these natural nanoparticles on the body of the Indian rock bee need to be to be further investigated; more research in the subject might raise important aspects in relation to the conservation of these unique pollinators.


2002 ◽  
Vol 751 ◽  
Author(s):  
C.J. Lu ◽  
L.A. Bendersky ◽  
K. Chang ◽  
I. Takeuchi

ABSTRACTThe defect structure of a 350-nm-thick epitaxial Ba0.3Sr0.7TiO3 thin film grown on (001) LaAlO3 has been investigated using conventional and high-resolution transmission electron microscopy. The predominant defects in the film are threading dislocations (TDs) with Burgers vectors b = <100> and <110>. A high density of extended stacking faults (SFs) with displacement vectors R = (1/2)<110> were also observed in the near-interface region of the film. The faults are associated with dissociated dislocations and partial halfloops. Some findings about dislocation dissociation and the atomic structure of the (1/2)<110> faults are observed for the first time in perovskites to our knowledge. The mechanisms for the generation, dissociation and evolution of the TDs as well as for the formation mechanism of the SFs are discussed.


Sign in / Sign up

Export Citation Format

Share Document