Human telomerase expression regulation

2011 ◽  
Vol 89 (4) ◽  
pp. 359-376 ◽  
Author(s):  
Marta Gladych ◽  
Aneta Wojtyla ◽  
Blazej Rubis

Since telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells, it has become a very promising target for anti-cancer therapy. A correlation between short telomere length and increased mortality was revealed in many studies. The telomerase expression/activity appears to be one of the most crucial factors to study to improve cancer therapy and prevention. However, this multisubunit enzymatic complex can be regulated at various levels. Thus, several strategies have been proposed to control telomerase in cancer cells such as anti-sense technology against TR and TERT, ribozymes against TERT, anti-estrogens, progesterone, vitamin D, retinoic acid, quadruplex stabilizers, telomere and telomerase targeting agents, modulation of interaction with other proteins involved in the regulation of telomerase and telomeres, etc. However, the transcription control of key telomerase subunits seems to play the crucial role in whole complexes activity and cancer cells immortality. Thus, the research of telomerase regulation can bring significant insight into the knowledge concerning stem cells metabolism but also ageing. This review summarizes the current state of knowledge of numerous telomerase regulation mechanisms at the transcription level in human that might become attractive anti-cancer therapy targets.

2006 ◽  
Vol 119 (2) ◽  
pp. 269-274 ◽  
Author(s):  
Alex Starr ◽  
Joel Greif ◽  
Akiva Vexler ◽  
Maia Ashkenazy-Voghera ◽  
Valery Gladesh ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1241
Author(s):  
Hanxi Yi ◽  
Zeneng Cheng

Since cancer is a serious threat to public health worldwide, the development of novel methods and materials for treating cancer rapidly and thoroughly is of great significance. This review summarizes the mechanism and application of photocatalytic materials used to kill cancer cells. The photosensitivity and toxicological properties of several common photcatalysts used in anti-cancer treatment are discussed in detail. The ideal photocatalyst must possess the following characteristics: a highly stable production of active oxygen species and high selectivity to cancer cells without causing any damage to healthy tissues. This work concluded the existing photocatalytic materials used to treat cancer, as well as the current challenges in the application of cancer therapy. We aim to provide a basis for the development of new photocatalytic anti-cancer materials with high stability and selectivity while maintaining high photodynamic reaction performance.


Oncotarget ◽  
2017 ◽  
Vol 8 (8) ◽  
pp. 13957-13970 ◽  
Author(s):  
Tae-Eun Kim ◽  
Sungyoul Hong ◽  
Kyoung Song ◽  
Sang-Ho Park ◽  
Young Kee Shin

2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Teresa L. Wargasetia

MicroRNAs (miRNAs) are involved in the signaling circuits regulation within a cell andtheir deregulation plays an important role in cancer development and progression. In thisreview, we discussed miRNA biogenesis, miRNA function and the effect of miRNA abnormalitiesin cellular pathways that led to transformation of normal cells into cancer cells, as well as theindication of miRNAs as diagnostic and prognostic biomarkers of various types of cancer, asbiomarkers to predict the response to cancer therapy and the potential for development ofmiRNAs as cancer targeted therapy.Keywords: miRNA, cancer, diagnostic biomarker, prognostic biomarker, cancer therapy


Author(s):  
Wenxing Song ◽  
Xing Su ◽  
David Gregory ◽  
Wei Li ◽  
Zhiqiang Cai ◽  
...  

Curcumin is a promising anti-cancer drug but its applications in cancer therapy are limited due to its poor solubility, short half-life and low bioavailability. In this study, curcumin loaded magnetic alginate / chitosan nanoparticles were fabricated to improve the bioavailability, uptake efficiency and cytotoxicity of curcumin to MDA-MB-231 breast cancer cells. Alginate and chitosan were deposited on Fe3O4 magnetic nanoparticles based on their electrostatic properties. The sizes of the nanoparticles (120-200 nm) were within the optimum range for drug delivery. Sustained curcumin release was obtained use the nanoparticles with the ability to control the curcumin release rate by altering the number of chitosan and alginate layers. Confocal fluorescence microscopy results showed that targeted delivery of curcumin with the aid of magnetic field were achieved. The FACS assay indicated that MDA-MB-231 cells treated with curcumin loaded nanoparticles had a 3-6 folds uptake efficiency to those treated with free curcumin. MTT assay indicated that the curcumin loaded nanoparticles exhibited significantly higher cytotoxicity toward MDA-MB-231 cells than toward HDF cells. The sustained release profiles, enhanced uptake efficiency and cytotoxicity to cancer cells as well as the targeting potential make MACPs a promising candidate for cancer therapy.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2260
Author(s):  
Simone Negrini ◽  
Raffaele De Palma ◽  
Gilberto Filaci

Telomerase is a reverse transcriptase that maintains telomeres length, compensating for the attrition of chromosomal ends that occurs during each replication cycle. Telomerase is expressed in germ cells and stem cells, whereas it is virtually undetectable in adult somatic cells. On the other hand, telomerase is broadly expressed in the majority of human tumors playing a crucial role in the replicative behavior and immortality of cancer cells. Several studies have demonstrated that telomerase-derived peptides are able to bind to HLA (human leukocyte antigen) class I and class II molecules and effectively activate both CD8+ and CD4+ T cells subsets. Due to its broad and selective expression in cancer cells and its significant immunogenicity, telomerase is considered an ideal universal tumor-associated antigen, and consequently, a very attractive target for anti-cancer immunotherapy. To date, different telomerase targeting immunotherapies have been studied in pre-clinical and clinical settings, these approaches include peptide vaccination and cell-based vaccination. The objective of this review paper is to discuss the role of human telomerase in cancer immunotherapy analyzing recent developments and future perspectives in this field.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3014 ◽  
Author(s):  
Elena Shramova ◽  
Galina Proshkina ◽  
Victoria Shipunova ◽  
Anastasia Ryabova ◽  
Roman Kamyshinsky ◽  
...  

We report here a combined anti-cancer therapy directed toward HER2 and EpCAM, common tumor-associated antigens of breast cancer cells. The combined therapeutic effect is achieved owing to two highly toxic proteins—a low immunogenic variant of Pseudomonas aeruginosa exotoxin A and ribonuclease Barnase from Bacillus amyloliquefaciens. The delivery of toxins to cancer cells was carried out by targeting designed ankyrin repeat proteins (DARPins). We have shown that both target agents efficiently accumulate in the tumor. Simultaneous treatment of breast carcinoma-bearing mice with anti-EpCAM fusion toxin based on LoPE and HER2-specific liposomes loaded with Barnase leads to concurrent elimination of primary tumor and metastases. Monotherapy with anti-HER2- or anti-EpCAM-toxins did not produce a comparable effect on metastases. The proposed approach can be considered as a promising strategy for significant improvement of cancer therapy.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 29 ◽  
Author(s):  
Hyun Ah Seo ◽  
Sokviseth Moeng ◽  
Seokmin Sim ◽  
Hyo Jeong Kuh ◽  
Soo Young Choi ◽  
...  

The susceptibility of cancer cells to different types of treatments can be restricted by intrinsic and acquired therapeutic resistance, leading to the failure of cancer regression and remission. To overcome this problem, a combination therapy has been proposed as a fundamental strategy to improve therapeutic responses; however, resistance is still unavoidable. MicroRNA (miRNAs) are associated with cancer therapeutic resistance. The modulation of dysregulated miRNA levels through miRNA-based therapy comprising a replacement or inhibition approach has been proposed to sensitize cancer cells to other anti-cancer therapies. The combination of miRNA-based therapy with other anti-cancer therapies (miRNA-based combinatorial cancer therapy) is attractive, due to the ability of miRNAs to target multiple genes associated with the signaling pathways controlling therapeutic resistance. In this article, we present an overview of recent findings on the role of therapeutic resistance-related miRNAs in different types of cancer. We review the feasibility of utilizing dysregulated miRNAs in cancer cells and extracellular vesicles as potential candidates for miRNA-based combinatorial cancer therapy. We also discuss innate properties of miRNAs that need to be considered for more effective combinatorial cancer therapy.


Author(s):  
Anne-Marie Sapse

Cancer is an extraordinarily complicated group of diseases which are characterized by the loss of normal control of the maintenance of cellular organization in the tissues. It is still not completely understood how much of the disease is of genetic, viral, or environmental origin. The result, however, is that cancer cells possess growth advantages over normal cells, a reality which damages the host by local pressure effects, destruction of tissues, and secondary systemic effects. As such, a goal of cancer therapy is the destruction of cancer cells via chemotherapeutic agents or radiation. Since the late 1940s, when Farber treated leukemia with methotrexate, cancer therapy with cytotoxic drugs made enormous progress. Chemotherapy is usually integrated with other treatments such as surgery, radiotherapy, and immunotherapy, and it is clear that post-surgery, it is effective with solid tumors. This is due to the fact that only systemic therapy can attack micrometastases. The rationale for using chemotherapy is the control of tumor-cell populations via a killing mechanism. The major problem in this approach is the lack of selectivity of chemotherapeutic agents. Some agents indeed preferentially kill cancer cells, but no agents have been synthesized yet which kill only cancer cells and do not affect normal cells. Unfortunately, normal tissues are affected, giving rise to a multitude of side effects. In addition to drugs exhibiting cytotoxic activity, antiproliferative drugs are also formulated. According to their mode of action, anti-cancer drugs are divided into several classes. . . . alkylating agents antimetabolites DNA intercalators mitotic inhibitors lexitropsins drugs which bind covalently to DNA . . . Experimental studies of these molecules are complemented and enhanced by theoretical studies. Some of the theoretical studies use molecular mechanics methods while others apply ab initio or semi-empirical quantum-chemistry methods. Most of these molecules are large and besides their structures and properties it is important to investigate their interaction with DNA fragments (themselves large molecules). Ab initio calculations cannot always be applied to the whole system. Therefore, models are used and through a judicious choice of the entities investigated, the calculations can shed light on the problem and provide enough information to complement the experimental studies.


2015 ◽  
Vol 221 (4) ◽  
pp. S142
Author(s):  
Mohammad F. Shaikh ◽  
Blake D. Babcock ◽  
Elizabeth Gleeson ◽  
Patrice Love ◽  
Katlin Davitt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document