Ab Initio Studies of Anti-Cancer Drugs

Author(s):  
Anne-Marie Sapse

Cancer is an extraordinarily complicated group of diseases which are characterized by the loss of normal control of the maintenance of cellular organization in the tissues. It is still not completely understood how much of the disease is of genetic, viral, or environmental origin. The result, however, is that cancer cells possess growth advantages over normal cells, a reality which damages the host by local pressure effects, destruction of tissues, and secondary systemic effects. As such, a goal of cancer therapy is the destruction of cancer cells via chemotherapeutic agents or radiation. Since the late 1940s, when Farber treated leukemia with methotrexate, cancer therapy with cytotoxic drugs made enormous progress. Chemotherapy is usually integrated with other treatments such as surgery, radiotherapy, and immunotherapy, and it is clear that post-surgery, it is effective with solid tumors. This is due to the fact that only systemic therapy can attack micrometastases. The rationale for using chemotherapy is the control of tumor-cell populations via a killing mechanism. The major problem in this approach is the lack of selectivity of chemotherapeutic agents. Some agents indeed preferentially kill cancer cells, but no agents have been synthesized yet which kill only cancer cells and do not affect normal cells. Unfortunately, normal tissues are affected, giving rise to a multitude of side effects. In addition to drugs exhibiting cytotoxic activity, antiproliferative drugs are also formulated. According to their mode of action, anti-cancer drugs are divided into several classes. . . . alkylating agents antimetabolites DNA intercalators mitotic inhibitors lexitropsins drugs which bind covalently to DNA . . . Experimental studies of these molecules are complemented and enhanced by theoretical studies. Some of the theoretical studies use molecular mechanics methods while others apply ab initio or semi-empirical quantum-chemistry methods. Most of these molecules are large and besides their structures and properties it is important to investigate their interaction with DNA fragments (themselves large molecules). Ab initio calculations cannot always be applied to the whole system. Therefore, models are used and through a judicious choice of the entities investigated, the calculations can shed light on the problem and provide enough information to complement the experimental studies.

Author(s):  
Rajib Hossain ◽  
Muhammad Torequl Islam ◽  
Mohammad S. Mubarak ◽  
Divya Jain ◽  
Rasel Khan ◽  
...  

Background: Cancer is a global threat to humans and a leading cause of death worldwide. Cancer treatment includes, among other things, the use of chemotherapeutic agents, compounds that are vital for treating and preventing cancer. However, chemotherapeutic agents produce oxidative stress along with other side effects that would affect the human body. Objective: To reduce the oxidative stress of chemotherapeutic agents in cancer and normal cells by naturally derived compounds with anti-cancer properties, and protect normal cells from the oxidation process. Therefore, the need to develop more potent chemotherapeutics with fewer side effects has become increasingly important. Method: Recent literature dealing with the antioxidant and anticancer activities of the naturally naturally-derived compounds: morin, myricetin, malvidin, naringin, eriodictyol, isovitexin, daidzein, naringenin, chrysin, and fisetin has been surveyed and examined in this review. For this, data were gathered from different search engines, including Google Scholar, ScienceDirect, PubMed, Scopus, Web of Science, Scopus, and Scifinder, among others. Additionally, several patient offices such as WIPO, CIPO, and USPTO were consulted to obtain published articles related to these compounds. Result: Numerous plants contain flavonoids and polyphenolic compounds such as morin, myricetin, malvidin, naringin, eriodictyol, isovitexin, daidzein, naringenin, chrysin, and fisetin, which exhibit ‎antioxidant, anti-inflammatory, and anti-carcinogenic actions via several mechanisms. These compounds show sensitizers of cancer cells and protectors of healthy cells. Moreover, these compounds can reduce oxidative stress, which is accelerated by chemotherapeutics and exhibit a potent anticancer effect on cancer cells. Conclusions: Based on these findings, more research is recommended to explore and evaluate such flavonoids and polyphenolic compounds.


2020 ◽  
Vol 21 (15) ◽  
pp. 5583
Author(s):  
Manikandan Muthu ◽  
Sechul Chun ◽  
Judy Gopal ◽  
Gyun-Seok Park ◽  
Arti Nile ◽  
...  

Despite multitudes of reports on cancer remedies available, we are far from being able to declare that we have arrived at that defining anti-cancer therapy. In recent decades, researchers have been looking into the possibility of enhancing cell death-related signaling pathways in cancer cells using pro-apoptotic proteins. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and Mu-2/AP1M2 domain containing, death-inducing (MUDENG, MuD) have been established for their ability to bring about cell death specifically in cancer cells. Targeted cell death is a very attractive term when it comes to cancer, since most therapies also affect normal cells. In this direction TRAIL has made noteworthy progress. This review briefly sums up what has been done using TRAIL in cancer therapeutics. The importance of MuD and what has been achieved thus far through MuD and the need to widen and concentrate on applicational aspects of MuD has been highlighted. This has been suggested as the future perspective of MuD towards prospective progress in cancer research.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15012-e15012
Author(s):  
Mayur Sarangdhar ◽  
Venkatesh Kolli ◽  
William Seibel ◽  
John Peter Perentesis

e15012 Background: Recent advances in cancer treatment have revolutionized patient outcomes. However, toxicities associated with anti-cancer drugs remain a concern with many anti-cancer drugs now implicated in cardiotoxicity. The complete spectrum of cardiotoxicity associated with anti-cancer drugs is only evident post-approval of drugs. Deep Learning methods can identify novel and emerging safety signals in “real-world” clinical settings. Methods: We used AERS Mine, an open-source data mining platform to identify drug toxicity signatures in the FDA’s Adverse Event Reporting System of 16 million patients. We identified 1.3 million patients on traditional and targeted anti-cancer therapy to analyze therapy-specific cardiotoxicity patterns. Cardiotoxicity training dataset contained 1571 molecules characterized with bioassay against hERG potassium channel and included 350 toxic compounds with an IC50 of < 1μM. We implemented a Deep Belief Network to extract a deep hierarchical representation of the training data, and the Extra Tree Classifier to predict the toxicity of drug candidates. Drugs were encoded using 1024-bit Morgan fingerprint representation using SMILES with search radius of 7 atoms. Pharmacovigilance metrics (Relative Risks and safety signals) were used to establish statistical correlation. Results: This analysis identified signatures of arrhythmias and conduction abnormalities associated with common anti-cancer drugs (e.g. atrial fibrillation with ibrutinib, alkylating agents, immunomodulatory drugs; sinus bradycardia with 5FU, paclitaxel, thalidomide; sinus tachycardia with anthracyclines). Our analysis also identified myositis/myocarditis association with newer immune checkpoint inhibitors (e.g., atezolizumab, durvalumab, cemiplimab, avelumab) paralleling earlier signals for pembrolizumab, nivolumab, and ipilimumab. Deep Learning identified signatures of chemical moieties linked to cardiotoxicity, including common motifs in drugs associated with arrhythmias and conduction abnormalities with an accuracy of 89%. Conclusions: Deep Learning provides a comprehensive insight into emerging cardiotoxicity patterns of approved and investigational drugs, allows detection of ‘rogue’ chemical moieties, and shows promise for novel drug discovery and development.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 453 ◽  
Author(s):  
Sudhir Raghavan ◽  
David S. Baskin ◽  
Martyn A. Sharpe

Various pathways can repair DNA alkylation by chemotherapeutic agents such as temozolomide (TMZ). The enzyme O6-methylguanine methyltransferase (MGMT) removes O6-methylated DNA adducts, leading to the failure of chemotherapy in resistant glioblastomas. Because of the anti-chemotherapeutic activities of MGMT previously described, estimating the levels of active MGMT in cancer cells can be a significant predictor of response to alkylating agents. Current methods to detect MGMT in cells are indirect, complicated, time-intensive, or utilize molecules that require complex and multistep chemistry synthesis. Our design simulates DNA repair by the transfer of a clickable propargyl group from O6-propargyl guanine to active MGMT and subsequent attachment of fluorescein-linked PEG linker via ”click chemistry.” Visualization of active MGMT levels reveals discrete active and inactive MGMT populations with biphasic kinetics for MGMT inactivation in response to TMZ-induced DNA damage.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 532 ◽  
Author(s):  
Juhyun Shin ◽  
Min-Ho Song ◽  
Jae-Wook Oh ◽  
Young-Soo Keum ◽  
Ramesh Kumar Saini

Carotenoids are well known for their potent antioxidant function in the cellular system. However, in cancer cells with an innately high level of intracellular reactive oxygen species (ROS), carotenoids may act as potent pro-oxidant molecules and trigger ROS-mediated apoptosis. In recent years, the pro-oxidant function of several common dietary carotenoids, including astaxanthin, β-carotene, fucoxanthin, and lycopene, has been investigated for their effective killing effects on various cancer cell lines. Besides, when carotenoids are delivered with ROS-inducing cytotoxic drugs (e.g., anthracyclines), they can minimize the adverse effects of these drugs on normal cells by acting as antioxidants without interfering with their cytotoxic effects on cancer cells as pro-oxidants. These dynamic actions of carotenoids can optimize oxidative stress in normal cells while enhancing oxidative stress in cancer cells. This review discusses possible mechanisms of carotenoid-triggered ROS production in cancer cells, the activation of pro-apoptotic signaling by ROS, and apoptotic cell death. Moreover, synergistic actions of carotenoids with ROS-inducing anti-cancer drugs are discussed, and research gaps are suggested.


2013 ◽  
Vol 3 (1) ◽  
pp. 7 ◽  
Author(s):  
Anthony Stanislaus ◽  
Anil Philip Kunnath ◽  
Snigdha Tiash ◽  
Tahereh Fatemian ◽  
Nur Izyani Kamaruzman ◽  
...  

Cervical cancer is the second most common cancer and fourth leading cause of cancer-related deaths among women. Advanced stage of the disease is treated with radiation therapy and chemotherapy with poor therapeutic outcome and adverse side effects. NFκB, a well-known transcription factor in the control of immunity and inflammation, has recently emerged as a key regulator of cell survival through induction of antiapoptotic genes. Many human cancers, including cervical carcinoma, constitutively express NF-κB and a blockade in expression of its subunit proteins through targeted knockdown of the gene transcripts with small interfering RNAs (siRNA) could be an attractive approach in order to sensitize the cancer cells towards the widely used anti-cancer drugs. However, the inefficiency of the naked siRNA to cross the plasma membrane and its sensitiveness to nuclease-mediated degradation are the major challenges limiting the siRNA technology in therapeutic intervention. pH-sensitive carbonate apatite has been established as an efficient nano-carrier for intracellular delivery of siRNA, due to its strong electrostatic interaction with the siRNA, the desirable size distribution of the resulting siRNA complex for effective endocytosis and the ability of the endocytosed siRNA to be released from the degradable particles and escape the endosomes, thus leading to the effective knockdown of the target gene of cyclin B1 or ABCB1. Here, we report that carbonate apatite-facilitated delivery of the siRNA targeting NF-κB1 and NF-κB2 gene transcripts in HeLa, a human cervical adenocar- cinoma cell line expressing NF-κB, led to a synergistic effect in enhancement of chemosensitivity to doxorubicin, but apparently not to cisplatin or paclitaxel.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jinliang Gao ◽  
Tao Luo ◽  
Jinke Wang

AbstractAlthough some effective therapies have been available for cancer, it still poses a great threat to human health and life due to its drug resistance and low response in patients. Here, we develop a ferroptosis-based therapy by combining iron nanoparticles and cancer-specific gene interference. The expression of two iron metabolic genes (FPN and LCN2) was selectively knocked down in cancer cells by Cas13a or microRNA controlled by a NF-κB-specific promoter. Cells were simultaneously treated by iron nanoparticles. As a result, a significant ferroptosis was induced in a wide variety of cancer cells. However, the same treatment had little effect on normal cells. By transferring genes with adeno-associated virus and iron nanoparticles, the significant tumor growth inhibition and durable cure were obtained in mice with the therapy. In this work, we thus show a cancer therapy based on gene interference-enhanced ferroptosis.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 16042-16042
Author(s):  
Y. Miyagi ◽  
K. Fujiwara ◽  
S. Nagao ◽  
J. Kigawa ◽  
K. Miyake ◽  
...  

16042 Background: Recent clinical studies for ovarian cancer have demonstrated the survival benefit of intraperitoneal (IP) administration of anti-cancer drugs, such as platinum agents, or paclitaxel. It is of great interest to investigate whether IP administration of other cytotoxic agents are more effective compared with intravenous (IV) administration. In this study we investigated the pharmacological advantage of IP administration using anti-cancer drugs, of which cytocidal effect is determined by the value of the area under the time concentration curve (AUC), by using computer simulation model. Methods: The 3-compartment pharmacokinetic computer model was used and 161,051 sets of the rate constants were substituted into the model. Because one set of the rate constants determines a pharmacokinetic behavior of one drug, it was considered to simulate over 160,000 drugs in this study. The constants were referred to ones of carboplatin. The simulations were made after 210 mg/body of the drugs were administered. The values of the AUC in the serum and in the IP cavity after IP or IV administration were calculated for each set, and then, these two administration methods were compared. Results: The values of the AUC in the serum by IP vs IV administration were 6.675 ± 21.603 (mean±SD); [0.08 - 106.155 (range)] vs 6.663 ± 21.541; [0.183 - 105.726]. The values of the AUC in the cavity after IP vs IV administration were 128.799 ± 344.491; [0.342 - 2288.48] vs 90.700 ± 283.946; [0.002 - 2259.32]. The ratios of AUC in the serum after IP or IV administrations were 0.995 ± 0.023; [0.401 - 1.020]. 147,201 sets (91.4%) were between 0.99 and 1.01. On the other hand, the ratios in the IP cavity were 25.327 ± 86.515; [1.003 - 548.976]. All the IP/IV ratios in the cavity were more than 1. Conclusions: The simulated probability clearly indicated that IP administration is not a local but a systemic chemotherapy for most drugs. All of the chemotherapeutic agents should be investigated for IP administration as well as conventional IV administration in clinical research protocol, especially in phase I/II study to clarify the effects and toxicities. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document