Stress distributions and paths in clays during pressuremeter tests

2001 ◽  
Vol 38 (3) ◽  
pp. 542-552 ◽  
Author(s):  
V Silvestri ◽  
R Diab

This paper presents a novel analysis for the interpretation of pressuremeter tests in clay. No prior knowledge of the constitutive properties of the material is required. Shear, radial, and tangential stresses are determined at various distances from the probe and for different levels of cavity strain. Total and effective stress paths followed by material elements within the deformed soil are represented on shear stress – normal stress diagrams. The analysis is applied to the interpretation of pressuremeter tests carried out in both the field and the laboratory.Key words: pressuremeter tests, clays, novel analysis, stress–strain curves, stress distributions, stress paths.

2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Yufei Chen ◽  
Changbao Jiang ◽  
Guangzhi Yin ◽  
Andrew K. Wojtanowicz ◽  
Dongming Zhang

Abstract Shale gas well deliverability and economics depend on extremely low permeability that is not only dependent on the rock bedding trend but also controlled by in situ stresses. The purpose of this study was to determine relative contributions of normal and tangential stresses with respect to the rock bedding plane on permeability evolution of shale. The study involved an analysis of the rock bedding structure, followed by triaxial testing of rock samples and theoretical modeling. Also simulated were the effects of stress-bedding and load cycling. The results showed shale permeability reduction during the stress loading process and its gradual recovery during the unloading process. Permeability change was more pronounced in response to normal stress but some effects of the tangential stresses were also observed. Moreover, a theoretical model was derived to describe permeability change with effective stress in the presence of normal and tangential stresses. The model was empirically matched with the experimental results. The assessment of relative contributions of normal and tangential stresses was quantified with the analysis of variance (ANOVA). The analysis revealed significance levels of normal stress, and two tangential stresses σt1 and σt2 on shale permeability as 81%, 5%, and 14%, respectively. An almost 20-percent contribution of tangential stress loading to permeability response indicates a need for the improvement in computing effective stress. Therefore, a new method was suggested to determine effective stress when predicting permeability evolution of shale.


1960 ◽  
Vol 97 (5) ◽  
pp. 422-435 ◽  
Author(s):  
D. W. Hobbs

AbstractLaboratory measurements of the effect of a confining pressure on the strength and stress-strain characteristics of a metallurgical coking coal are described. Several-fold increases in the strength, the Young's modulus and the elastic strain at failure were found as the confining pressure was increased to 5,000 lb./n.2. The results are discussed in relation to various criteria of failure. It was found that failure was represented by Coulomb's equation relating shear stress and normal stress, provided the observed angles of fracture were not influenced by local edge stress concentrations.


1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


1987 ◽  
Vol 109 (2) ◽  
pp. 232-237 ◽  
Author(s):  
K. Craig ◽  
R. H. Buckholz ◽  
G. Domoto

This paper studies the rapid simple shearing flow of dry cohesionless metal powders contained between parallel rotating plates. In this study, an annular shear cell test apparatus was used; the dry metal powders are rapidly sheared by rotating one of the shear surfaces while the other shear surface remains fixed. Such a flow geometry is of interest to tribologists working in the area of dry or powder lubrication. The shear stress and normal stress on the stationary surface are measured as a function of the following parameters: shear surface boundary material and roughness, the shear-cell gap thickness, the shear-rate and the fractional solids content. Both the fractional solids content and the gap thickness are kept at prescribed values during stress measurements. In this experiment the metal powder tested is different from the shear transmission surface material; the effect on the measured normal and shear stress data are reported. The results show the dependence of the normal stress and the shear stress on the shear-rate, particle density and particle diameter. Likewise, a significant stress dependence on both the fractional solids content and the shear-cell gap thickness was observed.


1996 ◽  
Vol 12 (03) ◽  
pp. 167-171
Author(s):  
G. Bezine ◽  
A. Roy ◽  
A. Vinet

A finite-element technique is used to predict the shear stress and normal stress distribution in adherends for polycarbonate/polycarbonate single lap joints subjected to axial loads. Numerical and photoelastic results are compared so that a validation of the numerical model is obtained. The influences on stresses of the overlap length and the shape of the adherends are studied.


2016 ◽  
Vol 49 (1) ◽  
pp. 182-187 ◽  
Author(s):  
J. Todt ◽  
H. Hammer ◽  
B. Sartory ◽  
M. Burghammer ◽  
J. Kraft ◽  
...  

Synchrotron X-ray nanodiffraction is used to analyse residual stress distributions in a 200 nm-thick W film deposited on the scalloped inner wall of a through-silicon via. The diffraction data are evaluated using a novel dedicated methodology which allows the quantification of axial and tangential stress components under the condition that radial stresses are negligible. The results reveal oscillatory axial stresses in the range of ∼445–885 MPa, with a distribution that correlates well with the scallop wavelength and morphology, as well as nearly constant tangential stresses of ∼800 MPa. The discrepancy with larger stress values obtained from a finite-element model, as well as from a blanket W film, is attributed to the morphology and microstructural nature of the W film in the via.


Sign in / Sign up

Export Citation Format

Share Document