Magnetic properties of some Fe–S six-membered ring compounds

2002 ◽  
Vol 80 (12) ◽  
pp. 1646-1649 ◽  
Author(s):  
Ping Liu ◽  
Jia Cheng Liu ◽  
Jian Wang ◽  
Jian Kai Cheng ◽  
Wen Jie Li ◽  
...  

The Fe3S3 cluster is an important component located in the active centres of some iron–sulfur proteins. The magnetic properties of three Fe3S3 compounds have been studied for the first time by fitting the temperature-dependent magnetic susceptibilities. The calculated g factors and J couplings reproduce the magnetic behavior of such compounds very well. There is an antiferromagnetic spin interaction between pairs of magnetic centers in the Fe3S3 cluster compounds. The magnetic exchange of Fe-S-Fe model magnetic molecules is discussed.Key words: Fe3S3 compounds, magnetic, antiferromagnetic.

1996 ◽  
Vol 452 ◽  
Author(s):  
J. Hack ◽  
M. H. Ludwig ◽  
W. Geerts ◽  
R. E. Hummel

AbstractMagnetic properties of photoluminescing spark-processed silicon (sp-Si) have been investigated for the first time. Contrary to the diamagnetic signal known for bulk silicon, sp-Si displays a paramagnetic resonance as well as a ferromagnetic hysterisis loop. The paramagnetic resonance was studied using an EPR system and showed a high concentration of at least two distinct paramagnetic centers. One center can be eliminated by annealing in Ultra-High Purity nitrogen for 30 minutes at 600 °C. Measurements utilizing a SQUID magnetometer revealed that sp-Si displays ferromagnetic ordering with a saturization magnetization occuring at low fields. This is attributed to the high density of paramagnetic centers. Temperature dependent measurements were performed to establish possible links between magnetic properties and the luminescence of sp-Si.


MRS Advances ◽  
2019 ◽  
Vol 4 (40) ◽  
pp. 2185-2190
Author(s):  
R. Olmos ◽  
A. Cosio ◽  
C. L. Saiz ◽  
L. M. Martinez ◽  
L. Shao ◽  
...  

Abstractvan der Waals (vdW) magnetic materials show promise in being the foundation for future spintronic technology. The magnetic behavior of Fe2.7GeTe2 (FGT), a vdW itinerant ferromagnet, was investigated before and after proton irradiation. Proton irradiation of the sample was carried out at a fluence of 1×1018 cm-2. The magnetization measurements revealed a small increase of saturation magnetization (Ms) of about 4% upon proton irradiation of the sample, in which, the magnetic field was applied parallel to the c-axis. X-ray photoelectron spectroscopy for pristine and irradiated FGT revealed a general decrease in intensity after irradiation for Ge and Te and an increase in peak intensity of unavoidable surface iron oxide. Furthermore, no noticeable change in the Curie temperature (TC =152 K) is observed in temperature dependent magnetization variation. This work signifies the importance of employing protons in tuning the magnetic properties of vdW materials.


Author(s):  
S. Belhachi ◽  
S. Amari

We have investigated the electronic and magnetic properties of the doped Heusler alloys Cu2Cr[Formula: see text]V[Formula: see text]Ga ([Formula: see text], 0.5, and 1) using first-principles density functional theory within the generalized gradient approximation scheme. Lattice constants of all phases were determined, and the absence of energy gap in both the spin channels predicts that the materials are metallic. The calculated formation energies are negative, indicating stability of these compounds. Electronic structure and magnetic behavior are reported for the first time for the Cu2Cr[Formula: see text]V[Formula: see text]Ga alloy. It was found that the alloys are ferromagnetic, and metallic witch is confirmed by GGA[Formula: see text]U calculation.


Author(s):  
P.I. Loboda ◽  
Younes Razaz ◽  
S. Grishchenko

Purpose. To substantiate the efficiency of processing hematite raw materials at the Krivoy Rog Mining and Processing Plant of Oxidized Ores using the direct reduction technology itmk3®. Metodology. Analysis of the results of the itmk3® direct restoration technology developed by Kobe Steel Ltd., Japan and Hares Engineering GmbX, Austria, with a view to using it to process Krivbass hematite ores into granulated iron (so-called “nuggets”). Findings. The involvement in the production of hematite ores (oxidized quartzite) of Krivbass with high iron content, but with low magnetic properties for their processing into granular cast iron is grounded. Originality. The use of itmk3® direct reduction technology from Kobe Steel Ltd., Japan and Hares Engineering GmbH, Austria for the processing of Krivbass hematite ores into granular cast iron is justified for the first time. Practical value. The efficiency of the use of hematite ores (oxidized quartzite) has been substantiated, which can significantly reduce the costs in the mining cycle for the economical production of metallurgical products.


2017 ◽  
Vol 13 (1) ◽  
pp. 4486-4494 ◽  
Author(s):  
G.El Damrawi ◽  
F. Gharghar

Cerium oxide in borate glasses of composition xCeO2·(50 − x)PbO·50B2O3 plays an important role in changing both microstructure and magnetic behaviors of the system. The structural role of CeO2 as an effective agent for cluster and crystal formation in borate network is clearly evidenced by XRD technique. Both structure and size of well-formed cerium separated clusters have an effective influence on the structural properties. The cluster aggregations are documented to be found in different range ordered structures, intermediate and long range orders are the most structures in which cerium phases are involved. The nano-sized crystallized cerium species in lead borate phase are evidenced to have magnetic behavior.  The criteria of building new specific borate phase enriched with cerium as ferrimagnetism has been found to keep the magnetization in large scale even at extremely high temperature. Treating the glass thermally or exposing it to an effective dose of ionized radiation is evidenced to have an essential change in magnetic properties. Thermal heat treatment for some of investigated materials is observed to play dual roles in the glass matrix. It can not only enhance alignment processes of the magnetic moment but also increases the capacity of the crystallite species in the magnetic phases. On the other hand, reverse processes are remarked under the effect of irradiation. The magnetization was found to be lowered, since several types of the trap centers which are regarded as defective states can be produced by effect of ionized radiation. 


2020 ◽  
Vol 10 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Muhammad Hanif bin Zahari ◽  
Beh Hoe Guan ◽  
Lee Kean Chuan ◽  
Afiq Azri bin Zainudin

Background: Rare earth materials are known for its salient electrical insulation properties with high values of electrical resistivity. It is expected that the substitution of rare earth ions into spinel ferrites could significantly alter its magnetic properties. In this work, the effect of the addition of Samarium ions on the structural, morphological and magnetic properties of Ni0.5Zn0.5SmxFe2-xO4 (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) synthesized using sol-gel auto combustion technique was investigated. Methods: A series of Samarium-substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5SmxFe2-xO4 where x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by sol-gel auto-combustion technique. Structural, morphological and magnetic properties of the samples were examined through X-Ray Diffraction (XRD), Field-Emission Scanning Electron Microscope (FESEM) and Vibrating Sample Magnetometer (VSM) measurements. Results: XRD patterns revealed single-phased samples with spinel cubic structure up to x= 0.04. The average crystallite size of the samples varied in the range of 41.8 – 85.6 nm. The prepared samples exhibited agglomerated particles with larger grain size observed in Sm-substituted Ni-Zn ferrite as compared to the unsubstituted sample. The prepared samples exhibited typical soft magnetic behavior as evidenced by the small coercivity field. The magnetic saturation, Ms values decreased as the Sm3+ concentration increases. Conclusion: The substituted Ni-Zn ferrites form agglomerated particles inching towards more uniform microstructure with each increase in Sm3+ substitution. The saturation magnetization of substituted samples decreases with the increase of samarium ion concentration. The decrease in saturation magnetization can be explained based on weak super exchange interaction between A and B sites. The difference in magnetic properties between the samples despite the slight difference in Sm3+ concentrations suggests that the properties of the NiZnFe2O4 can be ‘tuned’, depending on the present need, through the substitution of Fe3+ with rare earth ions.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1035
Author(s):  
Ivan Shtepliuk ◽  
Volodymyr Khranovskyy ◽  
Arsenii Ievtushenko ◽  
Rositsa Yakimova

The growth of high-quality ZnO layers with optical properties congruent to those of bulk ZnO is still a great challenge. Here, for the first time, we systematically study the morphology and optical properties of ZnO layers grown on SiC substrates with off-cut angles ranging from 0° to 8° by using the atmospheric pressure meta–organic chemical vapor deposition (APMOCVD) technique. Morphology analysis revealed that the formation of the ZnO films on vicinal surfaces with small off-axis angles (1.4°–3.5°) follows the mixed growth mode: from one side, ZnO nucleation still occurs on wide (0001) terraces, but from another side, step-flow growth becomes more apparent with the off-cut angle increasing. We show for the first time that the off-cut angle of 8° provides conditions for step-flow growth of ZnO, resulting in highly improved growth morphology, respectively structural quality. Temperature-dependent photoluminescence (PL) measurements showed a strong dependence of the excitonic emission on the off-cut angle. The dependences of peak parameters for bound exciton and free exciton emissions on temperature were analyzed. The present results provide a correlation between the structural and optical properties of ZnO on vicinal surfaces and can be utilized for controllable ZnO heteroepitaxy on SiC toward device-quality ZnO epitaxial layers with potential applications in nano-optoelectronics.


2011 ◽  
Vol 170 ◽  
pp. 165-169 ◽  
Author(s):  
Tahir Ali ◽  
Ernst Bauer ◽  
Gerfried Hilscher ◽  
Herwig Michor

We report on structural and superconducting properties of La3-xRxNi2B2N3- where La is substituted by the magnetic rare-earth elements Ce, Pr, Nd. The compounds Pr3Ni2B2N3- and Nd3Ni2B2N3- are characterized for the first time. Powder X-ray diffraction confirmed all samples R3Ni2B2N3- with R = La, Ce, Pr, Nd and their solid solutions to crystallize in the body centered tetragonal La3Ni2B2N3 structure type. Superconducting and magnetic properties of La3-xRxNi2B2N3- were studied by resistivity, specific heat and susceptibility measurements. While La3Ni2B2N3- has a superconducting transition temperature Tc ~ 14 K, substitution of La by Ce, Pr, and Nd leads to magnetic pair breaking and, thus, to a gradual suppression of superconductivity. Pr3Ni2B2N3- exibits no long range magnetic order down to 2 K, Nd3Ni2B2N3- shows ferrimagnetic ordering below TC =17 K and a spin reorientation transition to a nearly antiferromagnetic state at 10 K.


Sign in / Sign up

Export Citation Format

Share Document