Hydrolysis of aryl hydrogen maleate esters mediated by cyclodextrins — Effect on the intramolecular catalysis

2005 ◽  
Vol 83 (9) ◽  
pp. 1281-1286 ◽  
Author(s):  
Gabriel O Andrés ◽  
O Fernando Silva ◽  
Rita H de Rossi

Kinetic studies of the hydrolysis of Z-aryl hydrogen maleates (Z = H, p-CH3, m-CH3, p-Cl, m-Cl) were carried out in the presence and absence of hydroxypropyl-β-cyclodextrin (HPCD) at variable pH from 1.00 to 3.00. The reaction involves the formation of maleic anhydride as an intermediate and the rate of its formation is strongly dependent on the pH. This is because the neighboring carboxylate group is a better catalyst than the carboxylic group. The rate constant for the formation of maleic anhydride decreases as the HPCD concentration increases in a nonlinear fashion. The results were interpreted in terms of the formation of a 1:1 inclusion complex of the esters with HPCD. The neutral (HA) and anionic (A) species of the substrate have different association constants (K[Formula: see text] and K[Formula: see text]). In all cases studied, K[Formula: see text] is higher than K[Formula: see text] for the same substrate. This difference is responsible for a decrease in the amount of the anionic substrate (reactive species) in the presence of HPCD, which results in a diminution of the observed rate constant. Besides, the rate constant for the reaction of the complexed substrate is smaller than that in the bulk solution indicating that the transition state of the cyclodextrin mediated reaction is less stabilized than the anionic substrate. The values of ΔΔG‡ are almost independent of the substituent on the aryl ring and range within 0.48 and 1.05 kcal mol–1 (1 cal = 4.184 J). There is no correlation between KTS and the association constant of the substrate indicating that the factors stabilizing the transition state are different from those that stabilize the substrate. Key words: cyclodextrins, intramolecular catalysis, hydrolysis, inhibition.

1986 ◽  
Vol 73 ◽  
Author(s):  
Carol A. Balfe ◽  
Kenneth J. Ward ◽  
David R. Tallant ◽  
Sheryl L. Martinez

ABSTRACTThe kinetics of hydrolysis of hexamethylcyclotrisiloxane and di-t-butyldimesitylcyclodisiloxane in tetrahydrofuran solution have been determined and compared to hydrolysis rates of silica defects. In the presence of sufficient excess witer, the first-order rate constant of the cyclotrisiloxine, k= 3.8 × 10−3 min is similar to the rate constant, k = 5.2 × 10−1 min, of the disappearance of the D2 Raman silica defect band it has been proposed to model. Limited hydrolysis rate data for the cyclodisiloxane suggests that it hydrolyzes at least four times faster than does the cyclotrisiloxane. These data are consistent with rate data available for silica crack growth and support the assignment of highly strained siloxane bonds at the crack tip to cyclodisiloxanes. Infrared spectra determined for the cyclodisiloxanes lend further support to this model.


1981 ◽  
Vol 46 (9) ◽  
pp. 2091-2103 ◽  
Author(s):  
Oldřich Pytela ◽  
Petr Svoboda ◽  
Miroslav Večeřa

Solvent dependence of hydrolysis rate constants of 3-acetyl-1,3-diphenyltriazene (I) and 3-(N-methylcarbamoyl)-1,3-diphenyltriazene (II) has been followed in the solvent mixtures ethanol-water, methanol-water, dioxane-water, and formamide-water within the mole fraction x = 0.0 to 0.5 at 25, 35 and 45 °C. A criterion has been suggested, based on sign of change of logarithm of the observed rate constant in dependence on change of the solvent composition, for evaluation of the reaction molecularity and, hence, participation of water in the hydrolysis mechanism. It has been found that water takes part as a proton donor in the transition state of hydrolysis of the substrates studied.


2019 ◽  
Vol 17 (1) ◽  
pp. 544-556
Author(s):  
Yoke-Leng Sim ◽  
Beljit Kaur

AbstractPhosphate ester hydrolysis is essential in signal transduction, energy storage and production, information storage and DNA repair. In this investigation, hydrolysis of adenosine monophosphate disodium salt (AMPNa2) was carried out in acidic, neutral and alkaline conditions of pH ranging between 0.30-12.71 at 60°C. The reaction was monitored spectrophotometrically. The rate ranged between (1.20 ± 0.10) × 10-7 s-1 to (4.44 ± 0.05) × 10-6 s-1 at [NaOH] from 0.0008 M to 1.00M recorded a second-order base-catalyzed rate constant, kOH as 4.32 × 10-6 M-1 s-1. In acidic conditions, the rate ranged between (1.32 ± 0.06) × 10-7 s-1 to (1.67 ± 0.10) × 10-6 s-1 at [HCl] from 0.01 M to 1.00 M. Second-order acid-catalyzed rate constant, kH obtained was 1.62 × 10-6 M-1 s-1. Rate of reaction for neutral region, k0 was obtained from graphical method to be 10-7 s-1. Mechanisms were proposed to involve P-O bond cleavage in basic medium while competition between P-O bond and N-glycosidic cleavage was observed in acidic medium. In conclusion, this study has provided comprehensive information on the kinetic parameters and mechanism of cleavage of AMPNa2 which mimicked natural AMP cleavage and the action of enzymes that facilitate its cleavage.


1982 ◽  
Vol 35 (7) ◽  
pp. 1357 ◽  
Author(s):  
TJ Broxton

The hydrolysis of 2-acetyloxybenzoic acid in the pH range 6-12 has been studied in the presence of micelles of cetyltrimethylammonium bromide (ctab) and cetylpyridinium chloride (cpc). In the plateau region (pH 6-8) the hydrolysis is inhibited by the presence of micelles, while in the region where the normal BAC2 hydrolysis (pH > 9) occurs the reaction is catalysed by micelles of ctab and cpc. The mechanism of hydrolysis in the plateau region is shown to involve general base catalysis by the adjacent ionized carboxy group both in the presence and absence of micelles. This reaction is inhibited in the presence of micelles because the substrate molecules are solubilized into the micelle and water is less available in this environment than in normal aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document