La formation des liaisons éthériques lors de la production du polytéréphthalate d'éthylène glycol

1978 ◽  
Vol 56 (21) ◽  
pp. 2703-2706 ◽  
Author(s):  
Vladimir Hornof ◽  
Leoš Zeman

Ether-type linkages are formed as by-products during the preparation of polyethylene terephthalate from dimethyl terephthalate and ethylene glycol. Incorporated in the polymer, these linkages affect its physical and mechanical properties such as tensile strength, melting point, and resistance to oxidation. An improved chemical method of analysis has been developed allowing an accurate determination of ether bonds in polyester fibres. The method is based on the selective oxidation of ethylene glycol with periodic acid and takes advantage of hydrolysis with water under pressure to decompose the polymer. The method has been employed to study the effect of the concentration of polycondensation catalyst on the formation of ethers.

2014 ◽  
Vol 62 (1) ◽  
pp. 129-137
Author(s):  
A. Sawicki ◽  
J. Mierczyński

Abstract A basic set of experiments for the determination of mechanical properties of sands is described. This includes the determination of basic physical and mechanical properties, as conventionally applied in soil mechanics, as well as some additional experiments, which provide further information on mechanical properties of granular soils. These additional experiments allow for determination of steady state and instability lines, stress-strain relations for isotropic loading and pure shearing, and simple cyclic shearing tests. Unconventional oedometric experiments are also presented. Necessary laboratory equipment is described, which includes a triaxial apparatus equipped with local strain gauges, an oedometer capable of measuring lateral stresses and a simple cyclic shearing apparatus. The above experiments provide additional information on soil’s properties, which is useful in studying the following phenomena: pre-failure deformations of sand including cyclic loading compaction, pore-pressure generation and liquefaction, both static and caused by cyclic loadings, the effect of sand initial anisotropy and various instabilities. An important feature of the experiments described is that they make it possible to determine the initial state of sand, defined as either contractive or dilative. Experimental results for the “Gdynia” model sand are shown.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2359
Author(s):  
Harmaen Ahmad Saffian ◽  
Masayuki Yamaguchi ◽  
Hidayah Ariffin ◽  
Khalina Abdan ◽  
Nur Kartinee Kassim ◽  
...  

In this study, Kraft lignin was esterified with phthalic anhydride and was served as reinforcing filler for poly(butylene succinate) (PBS). Composites with different ratios of PBS, lignin (L), modified lignin (ML) and kenaf core fibers (KCF) were fabricated using a compounding method. The fabricated PBS composites and its counterparts were tested for thermal, physical and mechanical properties. Weight percent gain of 4.5% after lignin modification and the FTIR spectra has confirmed the occurrence of an esterification reaction. Better thermo-mechanical properties were observed in the PBS composites reinforced with modified lignin and KCF, as higher storage modulus and loss modulus were recorded using dynamic mechanical analysis. The density of the composites fabricated ranged from 1.26 to 1.43 g/cm3. Water absorption of the composites with the addition of modified lignin is higher than that of composites with unmodified lignin. Pure PBS exhibited the highest tensile strength of 18.62 MPa. Incorporation of lignin and KCF into PBS resulted in different extents of reduction in tensile strength (15.78 to 18.60 MPa). However, PBS composite reinforced with modified lignin exhibited better tensile and flexural strength compared to its unmodified lignin counterpart. PBS composite reinforced with 30 wt% ML and 20 wt% KCF had the highest Izod impact, as fibers could diverge the cracking propagation of the matrix. The thermal conductivity value of the composites ranged from 0.0903 to 0.0983 W/mK, showing great potential as a heat insulator.


2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2865
Author(s):  
Md Jihad Miah ◽  
Md. Munir Hossain Patoary ◽  
Suvash Chandra Paul ◽  
Adewumi John Babafemi ◽  
Biranchi Panda

This paper investigates the possibility of utilizing steel slags produced in the steelmaking industry as an alternative to burnt clay brick aggregate (BA) in concrete. Within this context, physical, mechanical (i.e., compressive and splitting tensile strength), length change, and durability (porosity) tests were conducted on concrete made with nine different percentage replacements (0%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, and 100% by volume of BA) of BA by induction of furnace steel slag aggregate (SSA). In addition, the chemical composition of aggregate through X-ray fluorescence (XRF) analysis and microstructural analysis through scanning electron microscopy (SEM) of aggregates and concrete were performed. The experimental results show that the physical and mechanical properties of concrete made with SSA were significantly higher than that of concrete made with BA. The compressive and tensile strength increased by 73% when SSA fully replaced BA. The expansion of concrete made with SSA was a bit higher than the concrete made with BA. Furthermore, a significant lower porosity was observed for concrete made with SSA than BA, which decreased by 40% for 100% SSA concrete than 100% BA concrete. The relation between compressive and tensile strength with the porosity of concrete mixes are in agreement with the relationships presented in the literature. This study demonstrates that SSA can be used as a full replacement of BA, which is economical, conserves the natural aggregate, and is sustainable building material since burning brick produces a lot of CO2.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chatree Homkhiew ◽  
Surasit Rawangwong ◽  
Worapong Boonchouytan ◽  
Wiriya Thongruang ◽  
Thanate Ratanawilai

The aim of this work is to investigate the effects of rubberwood sawdust (RWS) size and content as well as the ratio of natural rubber (NR)/high-density polyethylene (HDPE) blend on properties of RWS reinforced thermoplastic natural rubber (TPNR) composites. The addition of RWS about 30–50 wt% improved the modulus of the rupture and tensile strength of TPNR composites blending with NR/HDPE ratios of 60/40 and 50/50. TPNR composites reinforced with RWS 80 mesh yielded better tensile strength and modulus of rupture than the composites with RWS 40 mesh. The TPNR/RWS composites with larger HDPE content gave higher tensile, flexural, and Shore hardness properties and thermal stability as well as lower water absorption. The TPNR/RWS composites with larger plastic content were therefore suggested for applications requiring high performance of thermal, physical, and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document