The potential of soil microorganisms to mineralize atrazine as predicted by MCH-PCR followed by nested PCR

2000 ◽  
Vol 46 (5) ◽  
pp. 425-432 ◽  
Author(s):  
Nir Shapir ◽  
Sebastien Goux ◽  
Raphi T Mandelbaum ◽  
Luc Pussemier

The potential of soil microorganisms to mineralize atrazine was studied in soil samples collected from fields with various histories of atrazine application. In contrast to many previous studies, which showed no atrazine mineralization activity, all the tested soils mineralized atrazine regardless of their atrazine application history. However, the delay before mineralization and the variation in the subsequent mineralization rate were in agreement with the initial copy number of the atrazine dechlorinaze gene, and the proliferation rate of the degraders. Soils from corn fields, which had up to 100 copies of the atzA gene per gram of soil, had a lag period of 4-5 days before atrazine mineralization started, and final mineralization percentages ranged from 40% to 54%. However, soils from fields that were never amended with atrazine had much longer lag periods (more than 17 days), which decreased after enrichment of the degrader population with high concentrations of atrazine for 15 days. Generally the mineralization rate and the atzA gene copy number increased after the enrichment period. The atrazine mineralization potential was measured by PCR of genes from the atrazine mineralization pathway. Magnetic capture hybridization was the most efficient of the two tested methods for purifying target DNA of PCR inhibitors, without reducing the copy number of the required fragment. Nested PCR proved to be the most effective method for predicting the exact potential of the soil to mineralize the pollutant even without enrichment of a small population with the target genes. This method can complement microcosm studies and eliminate futile efforts when the potential to mineralize the pollutant does not exist in the soil.Key words: MCH-PCR, mineralization, atrazine.

2019 ◽  
Vol 57 (8) ◽  
pp. 1142-1152 ◽  
Author(s):  
Hua-Jun He ◽  
Biswajit Das ◽  
Megan H. Cleveland ◽  
Li Chen ◽  
Corinne E. Camalier ◽  
...  

Abstract Background The National Institute of Standards and Technology (NIST) Reference Material RM 8366 was developed to improve the quality of gene copy measurements of EGFR (epidermal growth factor receptor) and MET (proto-oncogene, receptor tyrosine kinase), important targets for cancer diagnostics and treatment. The reference material is composed of genomic DNA prepared from six human cancer cell lines with different levels of amplification of the target genes. Methods The reference values for the ratios of the EGFR and MET gene copy numbers to the copy numbers of reference genes were measured using digital PCR. The digital PCR measurements were confirmed by two additional laboratories. The samples were also characterized using Next Generation Sequencing (NGS) methods including whole genome sequencing (WGS) at three levels of coverage (approximately 1 ×, 5 ×  and greater than 30 ×), whole exome sequencing (WES), and two different pan-cancer gene panels. The WES data were analyzed using three different bioinformatic algorithms. Results The certified values (digital PCR) for EGFR and MET were in good agreement (within 20%) with the values obtained from the different NGS methods and algorithms for five of the six components; one component had lower NGS values. Conclusions This study shows that NIST RM 8366 is a valuable reference material to evaluate the performance of assays that assess EGFR and MET gene copy number measurements.


2008 ◽  
Vol 123 (4) ◽  
pp. 817-825 ◽  
Author(s):  
Samuel Myllykangas ◽  
Siina Junnila ◽  
Arto Kokkola ◽  
Reija Autio ◽  
Ilari Scheinin ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 283
Author(s):  
Eyal Seroussi

Determination of the relative copy numbers of mixed molecular species in nucleic acid samples is often the objective of biological experiments, including Single-Nucleotide Polymorphism (SNP), indel and gene copy-number characterization, and quantification of CRISPR-Cas9 base editing, cytosine methylation, and RNA editing. Standard dye-terminator chromatograms are a widely accessible, cost-effective information source from which copy-number proportions can be inferred. However, the rate of incorporation of dye terminators is dependent on the dye type, the adjacent sequence string, and the secondary structure of the sequenced strand. These variable rates complicate inferences and have driven scientists to resort to complex and costly quantification methods. Because these complex methods introduce their own biases, researchers are rethinking whether rectifying distortions in sequencing trace files and using direct sequencing for quantification will enable comparable accurate assessment. Indeed, recent developments in software tools (e.g., TIDE, ICE, EditR, BEEP and BEAT) indicate that quantification based on direct Sanger sequencing is gaining in scientific acceptance. This commentary reviews the common obstacles in quantification and the latest insights and developments relevant to estimating copy-number proportions based on direct Sanger sequencing, concluding that bidirectional sequencing and sophisticated base calling are the keys to identifying and avoiding sequence distortions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raimonda Kubiliute ◽  
Indre Januskeviciene ◽  
Ruta Urbanaviciute ◽  
Kristina Daniunaite ◽  
Monika Drobniene ◽  
...  

AbstractHyperactivation of ABC transporter ABCB1 and induction of epithelial–mesenchymal transition (EMT) are the most common mechanism of acquired cancer chemoresistance. This study describes possible mechanisms, that might contribute to upregulation of ABCB1 and synergistically boost the acquisition of doxorubicin (DOX) resistance in breast cancer MX-1 cell line. DOX resistance in MX-1 cell line was induced by a stepwise increase of drug concentration or by pretreatment of cells with an ABCB1 transporter activator tetraphenylphosphonium (TPP+) followed by DOX exposure. Transcriptome analysis of derived cells was performed by human gene expression microarrays and by quantitative PCR. Genetic and epigenetic mechanisms of ABCB1 regulation were evaluated by pyrosequencing and gene copy number variation analysis. Gradual activation of canonical EMT transcription factors with later activation of ABCB1 at the transcript level was observed in DOX-only treated cells, while TPP+ exposure induced considerable activation of ABCB1 at both, mRNA and protein level. The changes in ABCB1 mRNA and protein level were related to the promoter DNA hypomethylation and the increase in gene copy number. ABCB1-active cells were highly resistant to DOX and showed morphological and molecular features of EMT. The study suggests that nongenotoxic ABCB1 inducer can possibly accelerate development of DOX resistance.


Toxicon ◽  
2021 ◽  
Author(s):  
Armando Mendoza-Flores ◽  
Ignacio Leyva-Valencia ◽  
Francisco E. Hernández-Sandoval ◽  
Clara E. Galindo-Sánchez ◽  
Christine J. Band-Schmidt ◽  
...  

2011 ◽  
Vol 22 (1) ◽  
pp. 64-75 ◽  
Author(s):  
N. Sher ◽  
G. W. Bell ◽  
S. Li ◽  
J. Nordman ◽  
T. Eng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document