Characterization of aerobic and anaerobic vegetative growth of the food-borne pathogen Bacillus cereus F4430/73 strain

2005 ◽  
Vol 51 (2) ◽  
pp. 149-158 ◽  
Author(s):  
Eric Rosenfeld ◽  
Catherine Duport ◽  
Assia Zigha ◽  
Philippe Schmitt

The Gram-positive bacterium Bacillus cereus is a facultative anaerobe that is still poorly characterized metabolically. In this study, the aerobic vegetative growth and anaerobic vegetative growth of the food-borne pathogen B. cereus F4430/73 strain were compared with those of the genome-sequenced ATCC14579 strain using glucose and glycerol as fermentative and nonfermentative carbon sources, respectively. Uncontrolled batch cultures on several defined media showed that B. cereus strains had high amino acid or pyruvate requirements for anaerobic fermentative growth. In addition, growth performance was considerably improved by maintaining the pH of the culture medium near neutrality. Spectra of fermentation by-products were typically (per mole of glucose) 0.2–0.4 acetate, 1.1–1.4 L-lactate, 0.3–0.4 formate, and 0.05–0.2 ethanol with only traces of succinate, pyruvate, and 2,3-butanediol. These spectra were drastically changed in the presence of 20 mmol nitrate·L–1, which stimulated anaerobic growth. During anaerobic and aerobic respiration, the persistent production of acetate and other by-products indicated overflow metabolisms. This was especially true in glucose-grown cells for which respiratory complex III made only a minor contribution to growth. Surprisingly, oxygen uptake rates linked to the cytochrome c and quinol branches of the respiratory chain were maintained at high levels in anaerobic, respiring, or fermenting cells. Growth and metabolic features of B. cereus F4430/73 are discussed using biochemical and genomic data.Key words: Bacillus cereus, growth, defined media, fermentation, respiration.

2017 ◽  
Vol 7 (4) ◽  
pp. 32 ◽  
Author(s):  
Rituparna Das ◽  
Arundhati Pal ◽  
Amal K. Paul

Endophytic bacteria colonizing the internal tissues of plants have attracted the attention of scientific communities in recent years for production of biodegradable polyesters like polyhydroxyalkanotaes (PHAs). A newly characterized bacterium, Bacillus cereus RCL 02 (GenBank accession no. KX458035), isolated from surface sterilized leaves of Ricinus communis L. has been explored for the production of poly(3-hydroxybutyrate) [P(3HB)], the most common PHA. As revealed by scanning electron microscopy, P(3HB) accumulating cells developed swellings or blebs and released the native granules as a function of autolysis. During growth in glucose containing mineral salts medium under batch fermentation, the isolate produced P(3HB) accounting 68% of its cell dry weight (CDW). Glucose and yeast extract when used in the ratio of 5:1, significantly influenced intracellular biopolyester accumulation (72.2%, CDW and 2.54 g/L). A further increase of polymer production (81%, CDW and 3.17 g/L) was accomplished in presence of 1.5 mM manganese as exogenous metal stress. Moreover, supplementation of the growth medium with non-conventional carbon sources especially refined sugarcane molasses further enhanced the production of both biomass (9.44 g/L) as well as polyester (83.6%, CDW and 7.89 g/L). These finding emphasises exploration of endophytic bacteria of oleaginous plants in general and R. communis L. in particular as potential but hitherto an under exploited bioresource for commercial production of biodegradable polyesters.


1984 ◽  
Vol 30 (6) ◽  
pp. 837-840 ◽  
Author(s):  
Lawrence I. Hochstein ◽  
Geraldine A. Tomlinson

A synthetic medium, consisting of inorganic salts and any of a number of carbon sources, supported the aerobic growth of Paracoccus halodenitrificans when supplemented with thiamine. The same medium plus an appropriate nitrogenous oxide supported anaerobic growth when additionally supplemented with methionine. The observation that vitamin B12 or betaine replaced methionine suggested that P. halodenitrificans had a defect in the cobalamin-dependent pathway for methionine biosynthesis, as well as the inability to synthesize betaine when growing anaerobically.


2007 ◽  
Vol 74 (3) ◽  
pp. 850-860 ◽  
Author(s):  
Barbara Cardazzo ◽  
Enrico Negrisolo ◽  
Lisa Carraro ◽  
Leonardo Alberghini ◽  
Tomaso Patarnello ◽  
...  

ABSTRACT In the present study we characterized 47 food-borne isolates of Bacillus cereus using multilocus sequence typing (MLST). Newly determined sequences were combined with sequences available in public data banks in order to produce the largest data set possible. Phylogenetic analysis was performed on a total of 296 strains for which MLST sequence information is available, and three main lineages—I, II, and III—within the B. cereus complex were identified. With few exceptions, all food-borne isolates were in group I. The occurrence of horizontal gene transfer (HGT) among various strains was analyzed by several statistical methods, providing evidence of widespread lateral gene transfer within B. cereus. We also investigated the occurrence of toxin-encoding genes, focusing on their evolutionary history within B. cereus. Several patterns were identified, indicating a pivotal role of HGT in the evolution of toxin-encoding genes. Our results indicate that HGT is an important element in shaping the population structure of the B. cereus complex. The results presented here also provide strong evidence of reticulate evolution within the B. cereus complex.


2022 ◽  
Vol 10 (1) ◽  
pp. 137
Author(s):  
Ning Liu ◽  
Xue Wang ◽  
Qiang Shan ◽  
Le Xu ◽  
Yanan Li ◽  
...  

Bacillus cereus, considered a worldwide human food-borne pathogen, has brought serious health risks to humans and animals and huge losses to animal husbandry. The plethora of diverse toxins and drug resistance are the focus for B. cereus. As an alternative treatment to antibiotics, probiotics can effectively alleviate the hazards of super bacteria, food safety, and antibiotic resistance. This study aimed to investigate the frequency and distribution of B. cereus in dairy cows and to evaluate the effects of Lactobacillus rhamnosus in a model of endometritis induced by multi-drug-resistant B. cereus. A strong poisonous strain with a variety of drug resistances was used to establish an endometrial epithelial cell infection model. B. cereus was shown to cause damage to the internal structure, impair the integrity of cells, and activate the inflammatory response, while L. rhamnosus could inhibit cell apoptosis and alleviate this damage. This study indicates that the B. cereus-induced activation of the NLRP3 signal pathway involves K+ efflux. We conclude that LGR-1 may relieve cell destruction by reducing K+ efflux to the extracellular caused by the perforation of the toxins secreted by B. cereus on the cell membrane surface.


FEBS Letters ◽  
1985 ◽  
Vol 189 (2) ◽  
pp. 207-211 ◽  
Author(s):  
Richard P. Ambler ◽  
Margaret Daniel ◽  
Joan Fleming ◽  
Jose-Miguel Hermoso ◽  
Calvin Pang ◽  
...  

1973 ◽  
Vol 19 (8) ◽  
pp. 943-947 ◽  
Author(s):  
S. D. Steele

An attempt to isolate a self-inhibitor of spore germination in Geotrichum candidum Link was unsuccessful because of the instability of the self-inhibitor. The ability of different carbon sources to stimulate germination and support somatic growth was tested in self-inhibitory conditions. Acetate, fructose, galactose, and glycerol supported both germination and somatic growth. All the fatty acids tested allowed germination but were unable to support vegetative growth; conversely mannitol could not induce germination but did support vegetative growth. Measurements of oxygen uptake by germinating arthrospores at various arthrospore concentrations showed a decrease in oxygen uptake per spore as the spore concentration (= self-inhibitor concentration) increased. Oxygen uptake per spore by dormant arthrospores also decreased with increasing spore concentration. Spore age was another factor influencing oxygen uptake by dormant spores; oxygen uptake per spore decreased with increasing spore age up to 7 days. Continued aging did not decrease the rate of oxygen uptake any further.


2016 ◽  
Vol 26 (12) ◽  
pp. 2030-2035 ◽  
Author(s):  
Han Young Chung ◽  
Kyu-Ho Lee ◽  
Sangryeol Ryu ◽  
Hyunjin Yoon ◽  
Ju-Hoon Lee ◽  
...  

2019 ◽  
Vol 3 (1) ◽  
pp. 159-167
Author(s):  
Murugesan Thandeeswaran ◽  
Sajitha Bijukumar ◽  
Mani Arulkumar ◽  
Ramasamy Mahendran ◽  
Muthusamy Palaniswamy ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1899
Author(s):  
Angela Michela Immacolata Montone ◽  
Federico Capuano ◽  
Andrea Mancusi ◽  
Orlandina Di Maro ◽  
Maria Francesca Peruzy ◽  
...  

Bacillus cereus is a spoilage bacterium and is recognized as an agent of food poisoning. Two food-borne illnesses are caused by B. cereus: a diarrheal disease, associated with cytotoxin K, hemolysin BL, non-hemolytic enterotoxin and enterotoxin FM, and an emetic syndrome, associated with the cereulide toxin. Owing to the heat resistance of B. cereus and its ability to grow in milk, this organism should be considered potentially hazardous in dairy products. The present study assessed the risk of B. cereus poisoning due to the consumption of water buffalo mozzarella cheese. A total of 340 samples were analyzed to determine B. cereus counts (ISO 7932:2005); isolates underwent molecular characterization to detect the presence of genes encoding toxins. Eighty-nine (26.1%) samples harbored B. cereus strains, with values ranging from 2.2 × 102 to 2.6 × 106 CFU/g. Isolates showed eight different molecular profiles, and some displayed virulence characteristics. Bacterial counts and the toxin profiles of isolates were evaluated both separately and jointly to assess the risk of enteritis due to B. cereus following the consumption of buffalo mozzarella cheese. In conclusion, the results of the present study showed that the risk of poisoning by B. cereus following the consumption of this cheese was moderate.


Sign in / Sign up

Export Citation Format

Share Document