Evaluation of the role of enzymatic and nonenzymatic antioxidant systems in the radiation resistance of Deinococcus
Antioxidant enzymes and antioxidant metabolites appear to have different roles in the oxidative stress resistance responses of radiation-resistant bacteria belonging to the Deinococcus – Thermus group. Twelve distinct strains belonging to 7 Deinococcus species were characterized for their responses to hydrogen peroxide, ciprofloxacin, and ionizing radiation. The levels of catalase and peroxidase activities in these strains showed a positive correlation with resistance to hydrogen peroxide and ciprofloxacin. However, the levels of these enzymes and carotenoids did not appear to contribute significantly to radiation resistance. Our findings support the idea that enzymatic defense systems are not sufficient to account for the extreme radiation resistance of Deinococcus species. Consistent with previously published reports, the Deinococcus strains had high intracellular manganese/iron ratios. No significant correlation was found between intracellular manganese/iron ratios and radiation resistance within different Deinococcus species, suggesting that other components are involved in conferring radiation resistance.