Soil water leachate from two forested catchments on the Precambrian Shield, Ontario

1996 ◽  
Vol 26 (8) ◽  
pp. 1353-1365 ◽  
Author(s):  
Bruce D. LaZerte ◽  
Lem Scott

A predominantly coniferous catchment on the Precambrian Shield had significantly more acid, base-poor, and Al-rich soil solutions than a predominantly deciduous catchment. Eight-year median depth profiles of the forest floor solutions revealed that ceramic tension lysimeters collected significantly higher levels of Al and Si, lower amounts of NO3−, and equal amounts of dissolved organic carbon than plastic zero-tension lysimeters. There was no significant difference between lysimeter types in the deeper mineral soils. NO3−, NH4+, K+, organic C, organic Al, Fe, and to a lesser extent Ca2+ and Mg2+ were more abundant in forest floor solutions than in the mineral soils. Inorganic Al, F−, Na+, and SO42− were more abundant in the mineral horizons, and Cl− was uniform throughout the profile. Calculations based on the Na profile and the weathering of plagioclase feldspars suggested that secondary Al and Si minerals were accumulating in the mineral soil. Long-term median inorganic Al concentrations followed the microcrystalline gibbsite solubility curve (−log(Al3+) = −9.2 + 3.0(pH); R2 = 0.97), and F− was closely correlated (R2 = 0.7). NO3−, NH4+, and K+ in the forest floor exhibited the strongest seasonal patterns, with peaks during the winter–spring snowmelt and late summer. Their levels increased severalfold in response to summer drought, but there was little response in the lower horizons. Apparently because of a decline in SO42− and possibly Ca2+ deposition, there was a long-term decline in Ca2+ and SO42− in the stream draining the PCl mineral horizons (approximately −2.1 ± 0.4 μequiv.•L−1•year−1), and a similar Ca2+ decline in the mineral soil solutions themselves. However, there was no change in pH or inorganic Al levels.

2002 ◽  
Vol 32 (5) ◽  
pp. 903-914 ◽  
Author(s):  
Sylvie Tremblay ◽  
Rock Ouimet ◽  
Daniel Houle

Soil organic carbon (C) is an important component of forest carbon pools and should be taken into account in sustainable forest management. However, there is a need to derive indicators for this attribute, as organic C content (Mg·ha–1) in forest soils is generally not available in Quebec survey data. Thus, we developed models to predict organic C accumulation in the forest floor and in mineral soils of upland forest soils (i.e., with forest floor thickness [Formula: see text]30 cm) using soil survey data as input variables. The best-fit model for predicting forest floor organic C content consisted of the explanatory variables forest floor thickness, latitude, and longitude. The model R2 was 0.76, and its CV was 28%. The second best-fit model, excluding geographical coordinates, included forest floor thickness and mean growing season precipitation as explanatory variables (R2 = 0.71, CV = 29.5%). The model for predicting mineral soil organic C content was composed of two submodels: (i) organic C concentration of a mineral horizon as a function of its colour and (ii) bulk density of that horizon as a function of its estimated C concentration (obtained from the former model). The R2 of the model for predicting organic C content in mineral soils was 0.57, and its CV was 29%. The models were used to predict organic C contents in 5547 pedons, dispersed throughout the commercial forest of Quebec and for which basic soil profile description data were available. It was then possible to evaluate and compare mean soil C accumulation in different forest stand types and to construct two maps of soil organic C accumulation in upland forest soils of southern Quebec. The results pointed out that forest floor thickness combined with mineral soil horizon colour, texture class, and pH would be useful sustainable forest management indicators of organic C accumulation in upland forest soils.


2008 ◽  
Vol 38 (9) ◽  
pp. 2455-2464 ◽  
Author(s):  
T. W. Giesen ◽  
S. S. Perakis ◽  
K. Cromack

Episodic stand-replacing wildfire is a significant disturbance in mesic and moist Douglas-fir ( Pseudotsuga menziesii (Mirb.) Franco) forests of the Pacific Northwest. We studied 24 forest stands with known fire histories in the western Cascade Range in Oregon to evaluate long-term impacts of stand-replacing wildfire on carbon (C) and nitrogen (N) pools and dynamics within the forest floor (FF, Oe and Oa horizons) and the mineral soil (0–10 cm). Twelve of our stands burned approximately 150 years ago (“young”), and the other 12 burned approximately 550 years ago (“old”). Forest floor mean C and N pools were significantly greater in old stands than young stands (N pools: 1823 ± 132 kg·ha–1vs. 1450 ± 98 kg·ha–1; C pools: 62 980 ± 5403 kg·ha–1vs. 49 032 ± 2965 kg·ha–1, mean ± SE) as a result of significant differences in FF mass. Forest floor C and N concentrations and C/N ratios did not differ by time since fire, yet potential N mineralization rates were significantly higher in FF of old sites. Old and young mineral soils did not differ significantly in pools, concentrations, C/N ratios, or cycling rates. Our results suggest that C and N are sequestered in FF of Pacific Northwest Douglas-fir forests over long (∼400 year) intervals, but that shorter fire return intervals may prevent that accumulation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mbezele Junior Yannick Ngaba ◽  
Ya-Lin Hu ◽  
Roland Bol ◽  
Xiang-Qing Ma ◽  
Shao-Fei Jin ◽  
...  

Abstract Soil C and N turnover rates and contents are strongly influenced by climates (e.g., mean annual temperature MAT, and mean annual precipitation MAP) as well as human activities. However, the effects of converting natural forests to intensively human-managed plantations on soil carbon (C), nitrogen (N) dynamics across various climatic zones are not well known. In this study, we evaluated C, N pool and natural abundances of δ13C and δ15N in forest floor layer and 1-meter depth mineral soils under natural forests (NF) and plantation forest (PF) at six sites in eastern China. Our results showed that forest floor had higher C contents and lower N contents in PF compared to NF, resulting in high forest floor C/N ratios and a decrease in the quality of organic materials in forest floor under plantations. In general, soil C, N contents and their isotope changed significantly in the forest floor and mineral soil after land use change (LUC). Soil δ13C was significantly enriched in forest floor after LUC while both δ13C and δ15N values were enriched in mineral soils. Linear and non-linear regressions were observed for MAP and MAT in soil C/N ratios and soil δ13C, in their changes with NF conversion to PF while soil δ15N values were positively correlated with MAT. Our findings implied that LUC alters soil C turnover and contents and MAP drive soil δ13C dynamic.


2020 ◽  
Vol 66 (6) ◽  
pp. 761-769
Author(s):  
Matt Busse ◽  
Ross Gerrard

Abstract We measured forest-floor accumulation in ponderosa pine forests of central Oregon and asked whether selected ecological functions of the organic layer were altered by thinning and repeated burning. Experimental treatments included three thinning methods applied in 1989 (stem only, whole tree, no thin—control) in factorial combination with prescribed burning (spring 1991 and repeated in 2002; no burn—control). Forest-floor depth and mass were measured every 4–6 years from 1991 to 2015. Without fire, there was little temporal change in depth or mass for thinned (270 trees ha−1) and control (560–615 trees ha−1) treatments, indicating balanced litterfall and decay rates across these stand densities. Each burn consumed 50–70 percent of the forest floor, yet unlike thinning, postfire accumulation rates were fairly rapid, with forest-floor depth matching preburn levels within 15–20 years. Few differences in forest-floor function (litter decay, carbon storage, physical barrier restricting plant emergence, erosion protection) resulted from thinning or burning after 25 years. An exception was the loss of approximately 300 kg N ha−1 because of repeated burning, or approximately 13 percent of the total site N. This study documents long-term forest-floor development and suggests that common silvicultural practices pose few risks to organic layer functions in these forests. Study Implications: Mechanical thinning and prescribed fire are among the most widespread management practices used to restore forests in the western US to healthy, firewise conditions. We evaluated their effects on the long-term development of litter and duff layers, which serve dual roles as essential components of soil health and as fuel for potential wildfire. Our study showed that thinning and burning provided effective fuel reduction and resulted in no adverse effects to soil quality in dry ponderosa pine forests of central Oregon. Repeated burning reduced the site carbon and nitrogen pools approximately 9–13 percent, which is small compared to C located in tree biomass and N in mineral soil. Litter accumulation after burning was rapid, and we recommend burning on at least a 15–20-year cycle to limit its build-up.


2021 ◽  
Vol 9 ◽  
Author(s):  
A. Vilhelmiina Harju ◽  
Ilkka Närhi ◽  
Marja Mattsson ◽  
Kaisa Kerminen ◽  
Merja H. Kontro

Views on the entry of organic pollutants into the organic matter (OM) decaying process are divergent, and in part poorly understood. To clarify these interactions, pesticide dissipation was monitored in organic and mineral soils not adapted to contaminants for 241 days; in groundwater sediment slurries adapted to pesticides for 399 days; and in their sterilized counterparts with and without peat (5%) or compost-peat-sand (CPS, 15%) mixture addition. The results showed that simazine, atrazine and terbuthylazine (not sediment slurries) were chemically dissipated in the organic soil, and peat or CPS-amended soils and sediment slurries, but not in the mineral soil or sediment slurries. Hexazinone was chemically dissipated best in the peat amended mineral soil and sediment slurries. In contrast, dichlobenil chemically dissipated in the mineral soil and sediment slurries. The dissipation product 2,6-dichlorobenzamide (BAM) concentrations were lowest in the mineral soil, while dissipation was generally poor regardless of plant-derived OM, only algal agar enhanced its chemical dissipation. Based on sterilized counterparts, only terbutryn appeared to be microbially degraded in the organic soil, i.e., chemical dissipation of pesticides would appear to be utmost important, and could be the first response in the natural cleansing capacity of the environment, during which microbial degradation evolves. Consistent with compound-specific dissipation in the mineral or organic environments, long-term concentrations of pentachloroaniline and hexachlorobenzene were lowest in the mineral-rich soils, while concentrations of dichlorodiphenyltrichloroethane (DTT) and metabolites were lowest in the organic soils of old market gardens. OM amendments changed pesticide dissipation in the mineral soil towards that observed in the organic soil; that is OM accelerated, slowed down or stopped dissipation.


2007 ◽  
Vol 37 (6) ◽  
pp. 1118-1133 ◽  
Author(s):  
Rock Ouimet ◽  
Sylvie Tremblay ◽  
Catherine Périé ◽  
Guy Prégent

We assessed the organic C stocks and inferred their changes in vegetation biomass, forest floor, and soil using a 50 year chronosequence of red pine ( Pinus resinosa Ait.) plantations established on postagricultural fields in southern Quebec, Canada. The data come from soil and tree field surveys carried out in the 1970s in 348 sites. Organic C concentrations were usually measured in three major mineral soil horizons; for the remaining soil horizons, they were estimated using pedotransfer functions. The effect of soil order, drainage, and texture was analysed. Over 22 years, organic C accumulation rates (Mg C·ha–1·year–1) were 1.66 ± 0.03 in vegetation biomass, 0.56 ± 0.07 in forest floor, 0.86 ± 0.47 in loamy soils (0–100 cm), and  –0.18 ± 0.24 in sandy soils (0–100 cm). The greater rate of C accumulation in loamy soils was due to the contribution of the 30–100 cm subsoil layer. The overall net accumulation of organic C in these plantation ecosystems was estimated to 51.4 ± 4.8 Mg C·ha–1 at 22 years. Soils of these plantations acted as a C sink in the first two decades, particularly in loamy soils compared with sandy soils, with no major differences among soil order or drainage.


2020 ◽  
Author(s):  
Stephanie Rehschuh ◽  
Michael Dannenmann

<p>Drought-sensitive European beech forests are increasingly challenged by climate change. Admixing other, preferably more deep-rooting, tree species has been proposed to increase the resilience of beech forests to summer drought. This might not only alter soil water dynamics and availability, but also soil organic carbon (SOC) and total nitrogen (TN) storage in soils. Since information of these effects is scattered, our aim was to synthesize results from studies that compared SOC/TN stocks of beech monocultures with those of mixed beech stands as well as of other monocultures. We conducted a meta-analysis including 40 studies with 208, 231 and 166 observations for forest floor, mineral soil and the total soil profile, respectively. Pure conifer stands had higher SOC stocks compared to beech in general, especially in the forest floor with up to 200% (larch forests). Other broadleaved tree species (ash, oak, lime, maple, hornbeam) showed in comparison to beech lower SOC storage in the forest floor, with little impact on total stocks.  Similarly, for mixed beech-conifer stands we found significantly increased SOC stocks of >10% and a small increase in TN stocks of approx. 4% compared to beech monocultures, which means a potential SOC storage increase of >0.1 t ha<sup>-1</sup>yr<sup>-1 </sup>(transformation of mineral soil to 100 cm depth). In contrast, mixed beech-broadleaved stands did not show a significant change in total SOC stocks. Currently, the influence climatic and soil parameters on SOC changes due to admixture of other tree species is analyzed based on this dataset. This is expected to facilitate an assessment which mixtures with beech have the largest potential towards increasing SOC stocks.</p>


2000 ◽  
Vol 80 (3) ◽  
pp. 507-514 ◽  
Author(s):  
Sylvain St-Laurent ◽  
Rock Ouimet ◽  
Sylvie Tremblay ◽  
Louis Archambault

Following the Rio and Kyoto protocols, forest sequestration of organic C (Corg) appears to be among the measures to reduce atmospheric C. In this context, we assessed the evolution of soils' reserves of Corg after complete whole-tree forest harvesting in the balsam fir–yellow birch forest of eastern Quebec. The experimental design consisted of eight plots in mature stands, and 10 plots in 7-, 12-, and 22-yr-old clearcuts in the "Seigneurie du Lac Métis", located 80 km south-east of Rimouski, Quebec, Canada. The soil type was an Orthic Humo-ferric Podzol. Major Corg losses occured in the forest floor of the 7-, 12- and 22-yr-old harvested plots compared with mature stands. The FH horizon of harvested plots showed a loss of 44% (−30.5 t ha−1) in dry weight and 13.5% (−62.1 g kg–1) in Corg content between 7 and 22-yr-old harvested plots. More than half the Corg content of the forest floor was lost in that time (−52% or −16.6 t ha−1). The Corg stock of the L horizon were lowered only for the 7-yr-old treatment (2.5 t ha−1) compared with mature stands (4.9 t ha−1). No significant differences in the Corg stocked in the first 30 m of the mineral soil were found between treatments. It appears that the forest floor of balsam fir–yellow birch stands has become a source of Corg for at least 22 yr after forest harvesting. Key words: Forest harvesting, soil, organic carbon, forest floor


1996 ◽  
Vol 26 (7) ◽  
pp. 1266-1272 ◽  
Author(s):  
W.Z. Huang ◽  
J.J. Schoenau

The purpose of this study was to characterize the quantity, distribution, and variance of water-soluble organic C (WSOC) in a soil under trembling aspen (Populustremuloides Michx.) in the southern boreal forest of Canada. WSOC was determined monthly from May to October 1994 in the forest floor horizons (L, F, H) and mineral soil (Ae) of an aspen stand in Prince Albert National Park, Saskatchewan. The concentration of WSOC varied considerably with profile depth, but varied little among the slope positions and aspects. The L horizon had the highest WSOC concentration (425–8690 mg•kg−1 ovendried soil), followed by the F, H, and Ae horizons. The concentration of WSOC in the Ae horizon was significantly related to the concentration in forest floor horizons above. Water-soluble organic C in the Ae horizon likely was derived from the overlying organic layer by leaching. In a laboratory incubation, the rate of WSOC release (the net result of release and uptake) during incubation decreased continuously over time, but in the field, the rate of WSOC release decreased slightly early in the growing season, but increased later in the season as new litter fall reached the forest floor. This indicates that litter fall is a major factor in the replenishment of WSOC in aspen forest stands.


Soil Research ◽  
2015 ◽  
Vol 53 (2) ◽  
pp. 190 ◽  
Author(s):  
M. Tatzber ◽  
N. Schlatter ◽  
A. Baumgarten ◽  
G. Dersch ◽  
R. Körner ◽  
...  

Recent studies show that a labile soil carbon (C) fraction determined with potassium permanganate (KMnO4) reflects the type of soil management. The present study combines the method for determining the active C (AC) pool with an alternative titration of the 0.02 m KMnO4 solution with sodium oxalate (Na2C2O4) for routine laboratory analyses. Three long-term field experiments investigated: (i) different cropping systems and 14C-labelled organic amendments, (ii) three different tillage systems, and (iii) the application of four different kinds of compost. The results showed the depletion of AC in the permanent bare-fallow system of the 14C-labelled field experiment. When calculating the ratio AC/total organic C (TOC), the depletion of the AC/TOC curve reflected a priming effect, in accord with previous work. We obtained significant positive correlations of AC with TOC, total nitrogen (Nt), humic acid-C and remaining 14C-labelled material. The AC in the tillage systems experiment was significantly (P < 0.05) different between all three tillage treatments at 0–10 cm depth, and the ratio AC/TOC also revealed a significant difference between minimum and conventional tillage treatments at 10–20 cm. For the compost field experiment, significant differences occurred between plots fertilised solely with N and plots receiving organic amendments. The AC/TOC ratio of the sewage sludge amendment was significantly lower than in all other systems. Correlations of AC with TOC for all samples of the different long-term field experiments revealed different behaviours in different soil types. The correlations of AC with Nt showed higher coefficients than with TOC. The applied methodology has a potential for sensitive and reliable detections of differences in soil organic matter characteristics.


Sign in / Sign up

Export Citation Format

Share Document