The Use of Engelmann Spruce Latewood Density for Dendrochronological Purposes

1971 ◽  
Vol 1 (2) ◽  
pp. 90-98 ◽  
Author(s):  
M. L. Parker ◽  
W. E. S. Henoch

Two parameters of growth rings from Engelmann spruce (Piceaengelmannii Parry) near Peyto lake, Alberta were studied and compared. Indices of maximum density of the latewood were derived from densitometric plots of X-ray negatives. Indices of ring widths were also obtained from the same specimens. Latewood density proved to be more useful for dendrochronological studies than ring width. The indices of density were significantly correlated with mean maximum air temperature and monthly runoff during August for three rivers in the region near Peyto lake. Analysis of latewood density as well as ring width improves the potential for dating tree-ring materials, and for using them to estimate past environment, especially for trees, such as the Peyto lake Engelmann spruce, with rings that do not vary greatly in width from one year to the next.

1994 ◽  
Vol 24 (3) ◽  
pp. 638-641 ◽  
Author(s):  
Jeffrey D. DeBell ◽  
John C. Tappeiner II ◽  
Robert L. Krahmer

Wood density of western hemlock (Tsugaheterophylla (Raf.) Sarg.) was determined by X-ray densitometry of strips from breast-height samples consisting of rings 20–24 from the pith. Ring parameters were averaged over the 5 years for each strip. Wood density was negatively correlated with radial growth rate. Average wood density dropped from 0.47 to 0.37 g/cm3 as average ring width increased from 2 to 8 mm. Wood density decreased at higher growth rates primarily because earlywood width increased while latewood width remained the same; as a result, percentage of latewood decreased. Earlywood density decreased slightly at higher growth rates, but latewood density was not significantly related to growth rate.


The Holocene ◽  
2014 ◽  
Vol 24 (11) ◽  
pp. 1428-1438 ◽  
Author(s):  
Rob Wilson ◽  
Rohit Rao ◽  
Miloš Rydval ◽  
Cheryl Wood ◽  
Lars-Åke Larsson ◽  
...  

Maximum latewood density (MXD) is a strong proxy of summer temperatures. Despite this, there is a paucity of long MXD chronologies in the Northern Hemisphere, which limits large-scale tree-ring-based reconstructions of past temperature which are dominated by ring-width (RW) data – a weaker temperature proxy at inter-annual time-scales. This paucity likely results from the relative expense of measuring MXD and the lack of laboratories with the facilities to measure it. Herein, we test the ability of a relatively new, less expensive, tree-ring parameter, Blue Intensity (BI), to act as a surrogate parameter for MXD. BI was measured on Engelmann spruce samples from British Columbia where MXD had previously been measured to allow direct comparison between the two parameters. Signal strength analyses indicate that 8 MXD series were needed to acquire a robust mean chronology while BI needed 14. Utilising different detrending methods and parameter choices (RW + MXD vs RW + BI), a suite of reconstruction variants was developed. The explained variance from the regression modelling (1901–1995) of May–August maximum temperatures ranged from 52% to 55%. Validation tests over the earlier 1870–1900 period could not statistically distinguish between the different variants, although spectral analysis identified more lower frequency information extant in the MXD-based reconstructions – although this result was sensitive to the detrending method used. Ultimately, despite the MXD-based reconstruction explaining slightly more of the climatic variance, statistically robust reconstructions of past summer temperatures were also derived using BI. These results suggest that there is great potential in utilising BI for dendroclimatology in place of MXD data. However, more experimentation is needed to understand (1) how well BI can capture centennial and lower frequency information and (2) what biases may result from wood discolouration, either from species showing a distinct heartwood/sapwood boundary or from partly decayed sub-fossil samples.


1991 ◽  
Vol 21 (8) ◽  
pp. 1222-1233 ◽  
Author(s):  
M. E. Colenutt ◽  
B. H. Luckman

Tree-ring chronologies have been developed for alpine larch (Larixlyallii Parl.), alpine fir (Abieslasiocarpa (Hook.) Nutt.), and Engelmann spruce (Piceaengelmannii Parry) for a tree-line site at Larch Valley in Banff National Park. The alpine larch and alpine fir chronologies are the first published chronologies developed for these species in the Canadian Cordillera. Alpine larch, a deciduous conifer, has many very narrow and missing rings, making chronology development difficult. These problems were resolved by identifying common marker rings among species growing at the same site. Chronologies for all three species show suppressed growth in the early to mid 1800s followed by a period of higher growth that peaked in the early to mid 20th century and has since declined. The exact timing and nature of response to favourable and unfavourable growth conditions vary with species. Alpine larch exhibits the highest sensitivity, lowest first-order autocorrelation, and greatest common variance, suggesting it has excellent potential as a source of proxy climate data for tree-line sites in this area. Preliminary correlations between Lake Louise climate data and larch ring-width and maximum latewood density chronologies show that there are significant correlations with summer temperature variables. Engelmann spruce and alpine fir growing at the same site show a similar response but are more strongly influenced by precipitation and growing conditions of the previous year.


Author(s):  
J. Zhang ◽  
D.B. Williams ◽  
J.I. Goldstein

Analytical sensitivity and spatial resolution are important and closely related factors in x-ray microanalysis using the AEM. Analytical sensitivity is the ability to distinguish, for a given element under given conditions, between two concentrations that are nearly equal. The analytical sensitivity is directly related to the number of x-ray counts collected and, therefore, to the probe current, specimen thickness and counting time. The spatial resolution in AEM analysis is determined by the probe size and beam broadening in the specimen. A finer probe and a thinner specimen give a higher spatial resolution. However, the resulting lower beam current and smaller X-ray excitation volume degrade analytical sensitivity. A compromise must be made between high spatial resolution and an acceptable analytical sensitivity. In this paper, we show the necessity of evaluating these two parameters in order to determine the low temperature Fe-Ni phase diagram.A Phillips EM400T AEM with an EDAX/TN2000 EDS/MCA system and a VG HB501 FEG STEM with a LINK AN10 EDS/MCA system were used.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1226
Author(s):  
Pakorn Ditthakit ◽  
Sirimon Pinthong ◽  
Nureehan Salaeh ◽  
Fadilah Binnui ◽  
Laksanara Khwanchum ◽  
...  

Accurate monthly runoff estimation is crucial in water resources management, planning, and development, preventing and reducing water-related problems, such as flooding and droughts. This article evaluates the monthly hydrological rainfall-runoff model’s performance, the GR2M model, in Thailand’s southern basins. The GR2M model requires only two parameters: production store (X1) and groundwater exchange rate (X2). Moreover, no prior research has been reported on its application in this region. The 37 runoff stations, which are located in three sub-watersheds of Thailand’s southern region, namely; Thale Sap Songkhla, Peninsular-East Coast, and Peninsular-West Coast, were selected as study cases. The available monthly hydrological data of runoff, rainfall, air temperature from the Royal Irrigation Department (RID) and the Thai Meteorological Department (TMD) were collected and analyzed. The Thornthwaite method was utilized for the determination of evapotranspiration. The model’s performance was conducted using three statistical indices: Nash–Sutcliffe Efficiency (NSE), Correlation Coefficient (r), and Overall Index (OI). The model’s calibration results for 37 runoff stations gave the average NSE, r, and OI of 0.657, 0.825, and 0.757, respectively. Moreover, the NSE, r, and OI values for the model’s verification were 0.472, 0.750, and 0.639, respectively. Hence, the GR2M model was qualified and reliable to apply for determining monthly runoff variation in this region. The spatial distribution of production store (X1) and groundwater exchange rate (X2) values was conducted using the IDW method. It was susceptible to the X1, and X2 values of approximately more than 0.90, gave the higher model’s performance.


1986 ◽  
Vol 16 (5) ◽  
pp. 1041-1049 ◽  
Author(s):  
K. C. Yang ◽  
C. A. Benson ◽  
J. K. Wong

The distribution and vertical variation of juvenile wood was studied in an 81-year-old dominant tree and an 83-year-old suppressed tree of Larixlaricina (Du Roi) K. Koch. Two criteria, growth ring width and tracheid length, were used to demarcate the boundary of juvenile wood. The width of juvenile wood, expressed in centimetres and the number of growth rings, decreased noticeably from the base to the top of the tree. The volume of juvenile wood decreased in a similar pattern. These decreasing trends had a strong negative correlation with the year of formation of cambial initials at a given tree level. The length of these cambial initials decreased with increasing age of formation of the cambial initials. In the juvenile wood zone, there was a positive linear regression between the growth ring number (age) and the tracheid length. The slopes of these regression lines at various tree levels increased as the age of the year of formation of the cambial initials increased. At a given tree level, the length of tracheids increased from the pith to a more uniform length near the bark. However, the number of years needed to attain a more uniform tracheid length decreased from the base to the top of the tree. These relationships suggest that the formation of juvenile wood is related to the year of formation of the cambial initials. Consequently, the juvenile wood is conical in shape, tapering towards the tree top.


The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Jeroen DM Schreel

Over the last few decades – at a range of northern sites – changes in tree-ring width and latewood density have not followed mean summertime temperature fluctuations. This discrepancy sharply contrasts an earlier correlation between those variables. As the origin of this inconsistency has not been fully deciphered, questions have emerged regarding the use of tree-ring width and latewood density as a proxy in dendrochronological climate reconstructions. I suggest that temperature is no longer the most limiting factor in certain boreal areas, which might explain the observed divergence.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2572 ◽  
Author(s):  
Ya-Na Wu ◽  
Dar-Bin Shieh ◽  
Li-Xing Yang ◽  
Hwo-Shuenn Sheu ◽  
Rongkun Thordarson ◽  
...  

Finding a cancer-selective drug that avoids damaging healthy cells and organs is a holy grail in medical research. In our previous studies, gold-coated iron (Fe@Au) nanoparticles showed cancer selective anti-cancer properties in vitro and in vivo but were found to gradually lose that activity with storage or "ageing.” To determine the reasons for this diminished anti-cancer activity, we examined Fe@Au nanoparticles at different preparation and storage stages by means of transmission electron microscopy combined with and energy-dispersive X-ray spectroscopy, along with X-ray diffraction analysis and cell viability tests. We found that dried and reconstituted Fe@Au nanoparticles, or Fe@Au nanoparticles within cells, decompose into irregular fragments of γ-F2O3 and agglomerated gold clumps. These changes cause the loss of the particles’ anti-cancer effects. However, we identified that the anti-cancer properties of Fe@Au nanoparticles can be well preserved under argon or, better still, liquid nitrogen storage for six months and at least one year, respectively.


2011 ◽  
Vol 76 (3) ◽  
pp. 305-313 ◽  
Author(s):  
Lisa J. Wood ◽  
Dan J. Smith ◽  
Michael N. Demuth

AbstractRecognizing that climate influences both annual tree-ring growth and glacier mass balance, changes in the mass balance of Place Glacier, British Columbia, were documented from increment core records. Annually resolved ring-width (RW), maximum (MXD), and mean density (MD) chronologies were developed from Engelmann spruce and Douglas-fir trees sampled at sites within the surrounding region. A snowpack record dating to AD 1730 was reconstructed using a multivariate regression of spruce MD and fir RW chronologies. Spruce MXD and RW chronologies were used to reconstruct winter mass balance (Bw) for Place Glacier to AD 1585. Summer mass balance (Bs) was reconstructed using the RW chronology from spruce, and net balance was calculated from Bw and Bs. The reconstructions provide insight into the changes that snowpack and mass balance have undergone in the last 400 years, as well as identifying relationships to air temperature and circulation indices in southern British Columbia. These changes are consistent with other regional mass-balance reconstructions and indicate that the persistent weather systems characterizing large scale climate-forcing mechanisms play a significant glaciological role in this region. A comparison to dated moraine surfaces in the surrounding region substantiates that the mass-balance shifts recorded in the proxy data are evident in the response of glaciers throughout the region.


2018 ◽  
Vol 620 ◽  
pp. L13 ◽  
Author(s):  
A. Rouco Escorial ◽  
J. van den Eijnden ◽  
R. Wijnands

We present our Swift monitoring campaign of the slowly rotating neutron star Be/X-ray transient GX 304–1 (spin period of ∼275 s) when the source was not in outburst. We found that between its type I outbursts, the source recurrently exhibits a slowly decaying low-luminosity state (with luminosities of 1034 − 35 erg s−1). This behaviour is very similar to what has been observed for another slowly rotating system, GRO J1008–57. For that source, this low-luminosity state has been explained in terms of accretion from a non-ionised (“cold”) accretion disc. Because of the many similarities between the two systems, we suggest that GX 304–1 enters a similar accretion regime between its outbursts. The outburst activity of GX 304–1 ceased in 2016. Our continued monitoring campaign shows that the source is in a quasi-stable low-luminosity state (with luminosities a few factors lower than previously seen) for at least one year now. Using our NuSTAR observation in this state, we found pulsations at the spin period, demonstrating that the X-ray emission is due to accretion of matter onto the neutron star surface. If the accretion geometry during this quasi-stable state is the same as during the cold-disc state, then matter indeed reaches the surface (as predicted) during this later state. We discuss our results in the context of the cold-disc accretion model.


Sign in / Sign up

Export Citation Format

Share Document