The Effect of Some Monohydroxybenzoic and Dihydroxybenzoic Acids as Auxin Synergists on Rooting Softwood Cuttings of Basswood (Tiliaamericana L.) Under Mist

1975 ◽  
Vol 5 (3) ◽  
pp. 500-502 ◽  
Author(s):  
W. A. G. Morsink ◽  
V. G. Smith

Softwood cuttings of one clone and one juvenile population of basswood were rooted under intermittent mist, using a 2-min basal dip of indolebutyric acid (IBA) at concentrations of 1000, 5000, and 10 000 parts per million (ppm) in combination with one of salicylic acid, p-hydroxybenzoic acid, 3,5-, 2,5-, and 2,6-dihydroxybenzoic acids at concentrations of 5, 50, and 100 ppm. None of the phenolic compounds showed any root-promoting effect when used singly. In combination with IBA, 2,5-dihydroxybenzoic acid showed a root-promoting effect when applied to cuttings of the population but not for cuttings of the single clone.A root-promoting effect at certain of the higher concentrations of the rest of the phenols when combined with IBA could not clearly be distinguished from sample variation. IBA alone or in combination with any of the phenols had a much smaller root-promoting effect when applied to the cuttings of the single clone.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1810
Author(s):  
Monika Kędzierska-Matysek ◽  
Małgorzata Stryjecka ◽  
Anna Teter ◽  
Piotr Skałecki ◽  
Piotr Domaradzki ◽  
...  

The study compared the content of eight phenolic acids and four flavonoids and the antioxidant activity of six Polish varietal honeys. An attempt was also made to determine the correlations between the antioxidant parameters of the honeys and their polyphenol profile using principal component analysis. Total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity (ABTS) and reduction capacity (FRAP) were determined spectrophotometrically, and the phenolic compounds were determined using high-performance liquid chromatography (HPLC). The buckwheat honeys showed the strongest antioxidant activity, most likely because they had the highest concentrations of total phenols, total flavonoids, p-hydroxybenzoic acid, caffeic acid, p-coumaric acid, vanillic acid and chrysin. The principal component analysis (PCA) of the data showed significant relationships between the botanic origin of the honey, the total content of phenolic compounds and flavonoids and the antioxidant activity of the six Polish varietal honeys. The strongest, significant correlations were shown for parameters of antioxidant activity and TPC, TFC, p-hydroxybenzoic acid, caffeic acid and p-coumaric acid. Analysis of four principal components (explaining 86.9% of the total variance), as a classification tool, confirmed the distinctiveness of the Polish honeys in terms of their antioxidant activity and content of phenolic compounds.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 541 ◽  
Author(s):  
Renata Żyłła ◽  
Rafał Milala ◽  
Irena Kamińska ◽  
Marcin Kudzin ◽  
Marta Gmurek ◽  
...  

The aim of the work was to determine the influence of salicylic acid (SA) oxidation products on the effectiveness of their further removal in the membrane filtration process. Two commercial polyamide-based polymer membranes, HL (GE Osmonics) and TS80 (TriSepTM), were used and characterized by SEM microscopic analysis, contact angles, and free surface energy. The products of salicylic acid oxidation, 2,3- and 2,5-dihydroxybenzoic acid and catechol, were determined and their impact on the removal of unreacted salicylic acid in the nanofiltration process was investigated. It was also checked to what extent and why they were retained or not by the membranes. The results of the research have shown that the main product of salicylic acid oxidation, 2,3-dihydroxybenzoic acid, has a negative impact on the retention of salicylic acid in the nanofiltration stage, while the other product, catechol, improves SA retention. The determined values of contact angles correlate well with solubility (S) of the tested compounds, which increases in the following order SSA < S2,3-DHBA < SCAT, while the contact angle of the membrane decreases. Nevertheless, it has been shown that some oxidation products can penetrate the environment due to poorer membrane separation properties of these products.


2021 ◽  
Vol 176 ◽  
pp. 111505
Author(s):  
Estevão Perin Gomes ◽  
Cristine Vanz Borges ◽  
Gean Charles Monteiro ◽  
Matheus Antonio Filiol Belin ◽  
Igor Otavio Minatel ◽  
...  

2021 ◽  
Author(s):  
Jiajia Li ◽  
Dongmei Li ◽  
Boyang Liu ◽  
Ruiqi Wang ◽  
Yixuan Yan ◽  
...  

Abstract Endogenous plant hormones play important roles in germination, blossom, senescence, abscission of plants by a series of signal transduction and molecular regulation. The purpose of this research was to investigate the influence of root restriction (RR) cultivation on plant hormones variation tendency at different growth stages in diverse organs or tissues, ‘Muscat Hamburg’ (Vitis ‘Muscat of Alexandria’ × Vitis ‘Trollinger’) grapevine was used as test material. High Performance Liquid Chromatography (HPLC) was used to quantify hormone levels, aiming to investigate the influence of root restriction on the formation and transportation of plant hormones. The results revealed that RR treatment increased abscisic acid, salicylic acid, zeatin riboside, N6-(delta 2-isopentenyl)-adenine nucleoside concentrations, while reduced auxin, 3-indolepropionic acid, 3-indolebutyric acid, gibberellin A3, zeatin, N6-(delta 2-Isopentenyl)-adenine, kinetin, jasmonic acid and methyl jasmonate concentrations. To sum up, our results suggested that RR treatment could initiate stress responses via up-regulating abscisic acid and salicylic acid contents while down-regulating auxin and kinetin contents, resulting in the changes of fruit appearance and improvement of berry quality.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2444
Author(s):  
Kenjiro Ono ◽  
Mayumi Tsuji ◽  
Tritia R. Yamasaki ◽  
Giulio M. Pasinetti

The aggregation and deposition of α-synuclein (αS) are major pathologic features of Parkinson’s disease, dementia with Lewy bodies, and other α-synucleinopathies. The propagation of αS pathology in the brain plays a key role in the onset and progression of clinical phenotypes. Thus, there is increasing interest in developing strategies that attenuate αS aggregation and propagation. Based on cumulative evidence that αS oligomers are neurotoxic and critical species in the pathogenesis of α-synucleinopathies, we and other groups reported that phenolic compounds inhibit αS aggregation including oligomerization, thereby ameliorating αS oligomer-induced cellular and synaptic toxicities. Heterogeneity in gut microbiota may influence the efficacy of dietary polyphenol metabolism. Our recent studies on the brain-penetrating polyphenolic acids 3-hydroxybenzoic acid (3-HBA), 3,4-dihydroxybenzoic acid (3,4-diHBA), and 3-hydroxyphenylacetic acid (3-HPPA), which are derived from gut microbiota-based metabolism of dietary polyphenols, demonstrated an in vitro ability to inhibit αS oligomerization and mediate aggregated αS-induced neurotoxicity. Additionally, 3-HPPA, 3,4-diHBA, 3-HBA, and 4-hydroxybenzoic acid significantly attenuated intracellular αS seeding aggregation in a cell-based system. This review focuses on recent research developments regarding neuroprotective properties, especially anti-αS aggregation effects, of phenolic compounds and their metabolites by the gut microbiome, including our findings in the pathogenesis of α-synucleinopathies.


1958 ◽  
Vol 36 (5) ◽  
pp. 491-497 ◽  
Author(s):  
J. Pellerin ◽  
A. D'Iorio

3,4-Dihydroxybenzoic acid, 3,4-dihydroxyphenylacetic acid, 3,4-dihydroxymandelic acid, and 3,4-dihydroxycinnamic acid were separately incubated with L-methionine-methyl-C14 in the presence of rat liver or kidney homogenate. In each case, the radioactive metabolite separated by paper chromatography was found to have migrating properties similar to those of the 3-methoxy-4-hydroxyphenolic acid. This reaction was enhanced by the addition of ATP, Mg++, and reduced glutathione. When 3-hydroxybenzoic acid was incubated in this medium no methylated derivative was obtained. Preliminary experiments indicated that the enzymatic activity was contained mostly in the supernatant fraction. It was also noted that liver homogenate was much more active than kidney homogenate in methylating catechol acids.


1964 ◽  
Vol 19 (9) ◽  
pp. 781-783 ◽  
Author(s):  
Hans Grisebach ◽  
Karl-Otto Vollmer

Further investigations on the biosynthesis of benzoic acids in Gaultheria procumbens L. have shown that besides salicylic acid all the other benzoic acids (gentisinic acid, p-hydroxybenzoic acid, protocatechuic acid, o-pyrocatechuic acid(?), syringic acid and vanillinic acid) can be formed from cinnamic acid. In the case of vanillinic acid it was proved that the total activity is located in the carboxyl group when cinnamic acid-[3-14C] is the precursor.Formiat-14C is incorporated into the methylester group of methylsalicylate.


Sign in / Sign up

Export Citation Format

Share Document