Fertilisation azotée en forêt de pin gris (Pinusbanksiana). III. Croissance du pin gris

1981 ◽  
Vol 11 (2) ◽  
pp. 433-440 ◽  
Author(s):  
C. Camiré ◽  
B. Bernier

Six nitrogen fertilizers (urea, sulfur-coated urea, urea-formaldehyde, ammonium sulfate, ammonium nitrate, and calcium nitrate) were individually applied, either in fall or in spring, at a rate of 224 kg N/ha and compared for their effects on growth distribution along the stem, height increase, basal area increase, and volume increase of an 18-year-old jack pine stand during 5 years after treatment. The response to nitrogen treatments was maximum the 2nd and 3rd years after fertilization and became nil in the fifth season. The distribution of growth along the stem varied with the height considered, the maximum being observed in the first 3 m aboveground. Treatments that responded best in terms of increase in basal area (2 m2/ha or 34% higher than control) and in volume (10 m3/ha or 21% higher than control) were urea and ammonium sulfate applied in fall, and ammonium nitrate applied in spring. Regression analysis on principal components revealed that growth the year before treatment and nutrient concentrations in foliage (N, P, K, Mg, Ca, and Mn) explain at least 80% of the observed growth variations on a 5-year basis.

1981 ◽  
Vol 11 (2) ◽  
pp. 414-422
Author(s):  
C. Camiré ◽  
B. Bernier

Six nitrogen fertilizers (urea, sulfur-coated urea, urea-formaldehyde, ammonium nitrate, ammonium sulfate, and ammonium nitrate) were individually applied, either in fall or in spring, at a rate of 224 kg N/ha and compared for nitrogen retention in the different horizons of a podzol under jack pine. Despite its susceptibility to nitrogen losses through ammonia volatilization, urea was by far, among readily available nitrogen fertilizers, the one whose nitrogen is best retained in soil surface horizons. Retention varied with weather conditions that prevailed immediately after fertilizer application. With the other fertilizers used, nitrogen retention followed this order: ammonium sulfate > ammonium nitrate > calcium nitrate. After four seasons, about 50% of the nitrogen applied as sulfur-coated urea and urea-formaldehyde was still found in its original form. Ammonium sulfate is next to urea among the recommended nitrogen sources for similar jack pine sites, considering that fertilizers with nitrate are prone to leaching and the sulfur-coated urea and urea-formaldehyde used presented problems of nitrogen availability.


1981 ◽  
Vol 11 (2) ◽  
pp. 423-432 ◽  
Author(s):  
C. Camiré ◽  
B. Bernier

Fall or spring applications of six different nitrogen fertilizers (urea, sulfur-coated urea, urea-formaldehyde, ammonium nitrate, ammonium sulfate, and calcium nitrate) at a rate of 224 kg N/ha in an 18-year-old jack pine stand induced a very rapid increase of nitrogen concentration in current year and 1-year-old needles, as well as in weight of current year needles. In the latter, nitrogen content (concentration × weight) increased more than 100% the 1st year following fertilization in the ammonium sulfate and the ammonium nitrate treatments applied in spring. Response did not last more than 2 years. Foliar analysis of other elements (P, K, Ca, Mg, and Mn) revealed a reduction of P concentration in the needles sampled the first fall after treatment together with a reduction of Ca and Mn in the current foliage of the second and third seasons after treatment. Changes in nitrogen concentration in Kalmiaangustifolia L. and particularly in Solidagopuberula Nutt. were in good correlation with those observed in jack pine needles.


1979 ◽  
Vol 9 (4) ◽  
pp. 514-516 ◽  
Author(s):  
L. R. Auchmoody

Nitrogen fertilizers triggered germination of dormant Prunuspensylvanica L. seed naturally buried in the forest floor of 60-year-old Allegheny hardwood stands. Neither triple superphosphate nor muriate of potash applied with urea increased germination over that which occurred with urea alone. Rates as low as 56 kg/ha N from urea and calcium nitrate and 112 kg/ha N from ammonium sulfate stimulated germination. Nitrate was apparently responsible for breaking dormancy.


1961 ◽  
Vol 33 (1) ◽  
pp. 159-168
Author(s):  
Pentti Hänninen ◽  
Armi Kaila

Calcium nitrate and ammonium nitrate limestone (»Oulunsalpietari») were compared as the nitrogen fertilizer for oats in 15 field trials and for barley in one trial. The trials were carried out in summers 1959 and 1960 in various places in Finland. The split plot technique was employed in order to reduce the variation as much as possible. In 1959 the amounts of nitrogen applied as these two fertilizers to the corresponding halves of the plots were 25 and 50 kg/ha. In 1960 also higher applications were used: 75 and 100 kg/ha of N. In three trials these fertilizers were compared both as a surface dressing and worked in. Visual observations suggested about 5—6 weeks after sowing a darker green colour in the stands treated with calcium nitrate as compared with the other half treated with ammonium nitrate limestone. These differences later disappeared. In some trials a higher nitrogen content of the plants from the calcium nitrate stands could be demonstrated during this period. The uptake of nitrogen by plants was regularly followed throughout the growing period. Owing to the large variation, usually, no statistically significant difference between the effect of the fertilizers could be detected. In a few cases the superiority of calcium nitrate could be demonstrated. No differences in the ripening could be found. In most trials there was a fairly regular tendency to higher yields and higher nitrogen content in the grain and straw produced by calcium nitrate. Yet, only in a few cases were the differences statistically significant at the five per cent level. Thus, it was concluded that on the basis of the results of these trials ammonium nitrate limestone and calcium nitrate may be considered practically equal as nitrogen fertilizers for oats. There was no difference in the yields of barley produced by these two fertilizers, but the nitrogen content of grains was significantly lower with ammonium nitrate limestone than with calcium nitrate. This may be worth further study in connection with the production of malting barley.


1973 ◽  
Vol 3 (1) ◽  
pp. 122-139 ◽  
Author(s):  
J. Roderick Carrow ◽  
Robert E. Betts

Balsam woolly aphids were reared on young grand fir trees maintained in controlled environment or outdoors. Solutions of various nitrogen fertilizers were applied repeatedly to the trees and the effects on aphids and bark amino acids were studied. On trees fertilized with ammonium nitrate or a sequence of compounds, aphid population growth was less than on trees fertilized with urea or potassium ammonium nitrate. On urea-fertilized trees, populations multiplied 16.5 times in five generations, compared with a 5.7-fold increase on unfertilized trees and a 1.4-fold increase on ammonium nitrate-fertilized trees. These differences resulted from effects of these nutrients on aphid life history. Urea promoted aphid establishment and reproduction, whereas ammonium nitrate affected these processes, as well as survival, adversely. The highest establishment and survival rates resulted from potassium ammonium nitrate.These differences may be related to fertilizer-induced changes in the amino acid diet of the aphid. Thin layer electrophoresis and chromatography revealed that urea, ammonium nitrate, and calcium nitrate each increased arginine concentrations in the bark, the highest levels resulting from ammonium nitrate. Traces of phenylalanine and asparagine, found in other treatments, were absent from trees fertilized with ammonium nitrate during June.


1961 ◽  
Vol 33 (1) ◽  
pp. 169-184
Author(s):  
Armi Kaila ◽  
Pentti Hänninen

The distribution of ammonium nitrogen and nitrate nitrogen in the soils of field trials was followed in two growing seasons. In these trials ammonium nitrate limestone and calcium nitrate were, at several rates, applied as surface dressing. It was found that not only the ammonium nitrogen but also the nitrate nitrogen applied to the surface of loam, silt, silt clay, and fine sand clay soils tended to remain in the top inch for a considerable period in the absence of heavy rainfalls or a longer wet period. The plants appeared rapidly to deplete the layers downwards from 1 inch, but even after six and eight weeks from the application of the fertilizers the ammonium nitrogen and nitrate nitrogen contents of the surface inch could be markedly higher in the treated plots than in the untreated ones. In the non-cropped soil, eight weeks after the application of the fertilizers, the mineral nitrogen content of the top inch corresponded to about 60 % of the nitrogen applied. On the basis of these results the working in or placement of nitrogen fertilizers seems to be profitable. Fixation of ammonium nitrogen in unexchangeable forms was observed in some of the trials. This, however, did not significantly impair the value of ammonium nitrate limestone as a nitrogen source in these trials.


HortScience ◽  
1990 ◽  
Vol 25 (2) ◽  
pp. 194-196 ◽  
Author(s):  
Charles F. Mancino ◽  
Joseph Troll

Combining frequent N applications and irrigations for turfgrasses grown in sandy soils is a common occurrence on golf course putting greens. A greenhouse study was conducted to determine leaching losses of nitrate and ammonium nitrogen from `Penncross' creeping bentgrass (Agrostis palustris L.) growing on an 80 sand:20 peat soil mixture following frequent, moderately heavy irrigations and light or moderate N fertilizer applications. Nitrogen sources included calcium nitrate, ammonium nitrate, ammonium sulfate, urea, urea formaldehyde and isobutylediene diurea. Application levels were 9.76 kg N/ha per 7 days and 19.52 kg N/ha per 14 days for 10 weeks. Irrigation equivalent to 38 mm·week-1 was applied in three equal applications. Overall, 46% of the applied water leached. Total leaching losses were <0.5% of the applied N. Nitrate represented the major portion of the leached N, with ammonium losses being negligible. There were no differences between sources when applied at these levels. In a second study, a single 48.8 kg N/ha application resulted in higher leaching losses of N, but only calcium nitrate and ammonium nitrate had total losses > 2% (2.80% and 4.13%, respectively, over an n-day period). Nitrate concentrations were found to exceed 45 mg·liter-1 for ammonium nitrate.


2010 ◽  
pp. 134-140
Author(s):  
Andrea Balla Kovács ◽  
Anita Szabó ◽  
Emese Bartáné Szabó

A field experiment was conducted to examine the effects of different nitrogen fertilizers in combination with bacterial fertilizer onnutrient uptake of horseradish and plant available nutrients of the soil. Three different N fertilizers, ammonium-nitrate, urea and calciumnitrate(116 kg ha-1 N) in combination with Microbion UNC bacterial fertilizer (2 kg ha-1) were applied as treatments in a randomizedcomplete block design in three replications. In this paper we presented the results of soil measurements. The soil of the experimental areawas chernozem with medium sufficiency level of N and P and poor level of K.Our main results:The amount of 0.01M CaCl2 soluble inorganic nitrogen fractions, NO3--N and NH4+-N and also the quantity of soluble organic-N werealmost the same in the soil. N fertilizers significantly increased all the soluble N fractions. The amount of NO3--N increased to the greatestextent and the increase of organic N was the slightest. We measured the largest CaCl2 soluble NO3- -N and total-N contents in the plotstreated with ammonium-nitrate, the largest NH4+-N in the plots treated with calcium-nitrate and the largest organic-N fraction in plotstreated with urea.Bacterial inoculation also increased both soluble inorganic nitrogen forms and also total-N content of soil compared to the control. Inthe case of combined (artificial and bacterial fertilizer) treatments we measured lower NO3--N, organic-N and total-N compared to thevalues of plots having only nitrogen fertilizer treatments. On the contrary in the plots with combined treatments the CaCl2 soluble NH4+-Ncontent of soil in more cases were higher than that of values with artificial fertilizer treatment.As a function of calcium-nitrate application increased AL-P2O5 and AL-K2O values were measured compared to control. MicrobionUNC supplement of calcium nitrate yielded also increase in AL-P2O5 and AL-K2O values, till then supplement of ammonium-nitrate fertilizeryielded a decrease in these values compared to the control.All nitrogen fertilizers resulted in a significant decrease in AL-Mg content of soil compared to the control. Nevertheless bacterialfertilizer increased AL-Mg values in any cases.


1959 ◽  
Vol 39 (2) ◽  
pp. 157-164 ◽  
Author(s):  
S. Dubetz ◽  
R. L. Smith ◽  
G. C. Russell

Results of germination studies with canning corn, field beans, and sugar beets at three soil moisture levels and under five fertilizer treatments, along with the results of germination of sugar beets at iso-osmotic concentrations of mannitol and ammonium nitrate solutions, are reported.The moisture levels alone had no significant effect on the germination of any of the crops. Moisture levels in combination with nitrogen fertilizers reduced germination, and the reduction became progressively pronounced with decreasing moisture. Nitrogen caused a greater reduction than mannitol or P2O5. With only one-quarter of the available moisture in the soil, the nitrogen treatments resulted in virtually no germination of any of the three crops. There were significant differences in response pattern among species, with canning corn being the least sensitive and field beans showing the greatest reduction due to fertilizer damage. Results indicate that no fertilizer should be placed in contact with bean seeds. The highly soluble fertilizer, ammonium nitrate, should not be placed in contact with corn or beet seeds when soil moisture is limiting.Germination of sugar beets was significantly lowered in solutions having osmotic pressures exceeding 4 atmospheres. With increasing osmotic pressure at iso-osmotic concentrations, germination of sugar beets was lower in ammonium nitrate solutions than in mannitol solutions, suggesting toxicity of the nitrate or ammonium ions.


1963 ◽  
Vol 61 (3) ◽  
pp. 381-390 ◽  
Author(s):  
J. R. Devine ◽  
M. R. J. Holmes

1. Twenty-one experiments were carried out in various parts of England and Scotland in 1959–61 comparing two or more of the nitrogen sources ammonium sulphate, ammonium nitrate, calcium nitrate and urea, combine-drilled in compound fertilizers for spring barley.2. Ammonium sulphate and ammonium nitrate combine-drilled at rates from 35 to 105 lb./acre of nitrogen checked early growth slightly in some of the experiments, with no important difference between the two sources, which also gave similar grain yields.3. Calcium nitrate and urea combine-drilled at 45 lb./acre of nitrogen had no large effect on early growth, while at 70 and 90 lb./acre both fertilizers seriously delayed brairding and reduced the plant population in many of the experiments, especially in eastern England. They gave lower yields than ammonium sulphate and ammonium nitrate in many of the experiments in which early growth was affected, and gave lower mean yields at all rates of application.4. In eleven of the experiments, broadcast applications of two or more of the four nitrogen fertilizers were compared. All sources gave similar mean yields.5. There was a slightly smaller yield from combine drilling than from broadcasting ammonium sulphate and ammonium nitrate, and a markedly smaller yield from calcium nitrate and urea.


Sign in / Sign up

Export Citation Format

Share Document