Effects of climate on radial growth of subalpine conifers in the North Cascade Mountains

1994 ◽  
Vol 24 (9) ◽  
pp. 1921-1932 ◽  
Author(s):  
David W. Peterson ◽  
David L. Peterson

Dendroecological techniques were used to study the influence of climate on the growth of subalpine fir (Abieslasiocarpa (Hook.) Nutt.), Engelmann spruce (Piceaengelmannii Parry), and subalpine larch (Larixlyallii Parl.) in the North Cascade Mountains of Washington state. Study sites were selected on different topographic features at three points along an elevation gradient (ridgetop, valley slope, and valley floor) to characterize site influences on growth response to climate. Mixed species stands were sampled to identify possible differences in species response to climate on a common site. Species differences account for most of the variability in radial growth patterns and response to climate. The greatest differences are between subalpine fir and subalpine larch, while the greatest similarities are between subalpine fir and Engelmann spruce. After species, aspect is the most significant factor affecting growth response to climate. Spring snowpack and summer temperature are the primary climatic factors influencing growth. Spring snowpack is negatively correlated with growth for all three species, but the relationship is strongest for subalpine fir and weakest for subalpine larch. Subalpine larch growth is positively correlated with June temperature. Subalpine fir growth is positively correlated with July–August temperature. Engelmann spruce growth is positively correlated with June–August temperature, but unusually warm July–August temperatures are associated with reduced growth the following year. The response of subalpine forests in the North Cascades to future climate change will depend on winter snowpack accumulations and spring snowmelt rates. Earlier meltouts and warmer summers would benefit growth on north aspect sites, but could also increase the frequency and severity of summer drought conditions on ridges and south-aspect sites, where summer soil moisture may already be limiting.

1994 ◽  
Vol 24 (6) ◽  
pp. 1133-1143 ◽  
Author(s):  
Andrea Woodward ◽  
David G. Silsbee ◽  
Edward G. Schreiner ◽  
Joseph E. Means

Thirty years of cone production records for subalpine fir (Abieslasiocarpa (Hook.) Nutt.) and mountain hemlock (Tsugamertensiana (Bong.) Carr.) (two sites each) in the Cascade Mountains of Washington and Oregon were compared with basal area increment and weather records to determine relationships among weather, radial growth, and cone crop. Results show that the size of subalpine fir cone crops was negatively related to large crops and positively related to radial growth in the previous 2 years. Mountain hemlock cone crops were negatively related o a large cone crop and positively related to July or August temperature in the previous year. Radial growth in heavy cone years was inhibited more for subalpine fir than for mountain hemlock. Results are explained by differences in the location of cone production between species. It is concluded that global climate warming could result in fewer and more irregular cone crops for these species.


2004 ◽  
Vol 34 (9) ◽  
pp. 1946-1954 ◽  
Author(s):  
Qi-Bin Zhang ◽  
Richard J Hebda

Radial growth of trees in mountainous areas is subject to conditions associated with changes in elevation. We present ring-width chronologies for Douglas-fir trees (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) at nine sites spanning low to high elevations in the Bella Coola area of the central coast of British Columbia, near the northern limits of the species distribution, and investigate the variation in tree-ring growth patterns in relation to different elevations, using principal component (PC) analysis. We find that the first PC, which represents 55.6% of the total variance, reflects a common growth response at sites of different elevation. Response function analysis indicates that growing season precipitation is the major factor in controlling tree-ring growth. This factor explains more of the variance in low-elevation sites than it does in high-elevation ones. Temperature in August of the preceding year shows a negative relationship to ring-width growth. The second PC represents 16.7% of the total variance and reveals a distinct difference in growth response between low- and high-elevation sites. The length and temperature of the growing season seem to play an important role in tree-ring growth at sites of high elevation. Comparison of the Bella Coola records with those from southern Vancouver Island suggests that growing season precipitation influences growth of Douglas-fir on a macroregional scale, but other factors such as temperature modify the growth response at the limits of the distribution of the species.


2005 ◽  
Vol 35 (1) ◽  
pp. 48-64 ◽  
Author(s):  
Martin-Philippe Girardin ◽  
Jacques Tardif

This paper investigates the influence of surface climate and atmospheric circulation on radial growth of eight boreal tree species growing in the Duck Mountain Provincial Forest, Manitoba, Canada. Tree-ring residual chronologies were built, transformed into principal components (PCs), and analysed through correlation and response functions to reveal their associations to climate (temperature, precipitation, and drought data for the period 1912–1999, as well as local geopotential height data for the period 1948–1999). Geopotential height correlation and composite charts for the Northern Hemisphere were also constructed. Correlation and response function coefficients indicated that radial growth of all species was negatively affected by temperature-induced drought stresses from the summers previous and current to ring formation. The summer drought stress alone explained nearly 28% of the variance in PC1. Warm spring temperature was also a positive factor for Pinus banksiana Lamb. and Picea glauca (Moench) Voss, but a negative one for all hardwoods. Analyses performed on geopotential height highlighted the importance of the Northern Hemispheric atmospheric circulation in the species' response to climate. The variability within the 500-hPa level over southern Manitoba explained 39% and 58% of the variability in PC1 and PC2, respectively. The relationships were highly significant with the middle and high troposphere during spring and late summer (determinant factor for growing season length) and with the troposphere and stratosphere during summer. The sensitivity of tree growth to atmospheric circulation exceeded the synoptic scale, with a response associated with yearly variations in the amplitude of the mid-tropospheric longwaves.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1199
Author(s):  
Elisa Tamudo ◽  
J. Julio Camarero ◽  
Gabriel Sangüesa-Barreda ◽  
José Daniel Anadón

Rising temperatures and aridification, combined with the stressing effect of some hemiparasitic plants such as mistletoes, may contribute to reduce vigour and growth of trees and shrubs leading to dieback and increasing mortality. This has been rarely explored in pioneer shrubs such as junipers, which are assumed to be more drought tolerant than coexisting trees. To test these ideas, we reconstructed radial growth patterns of common junipers (Juniperus communis L.) with different crown cover and infestation degree by dwarf mistletoe (Arceuthobium oxycedri (DC.) M. Bieb.) in two sites with contrasting aspect and water availability located in north-eastern Spain. We used dendrochronology to study the response of junipers’ radial growth to climatic factors (temperature, precipitation, and soil moisture), an index of drought severity, and mistletoe infestation. Juniper growth was constrained by elevated temperatures and low precipitation leading to drought during the growing season. Infestation by dwarf mistletoe contributed to a short-term growth decline in junipers. The interaction between low summer precipitation and high dwarf mistletoe infestation constrained juniper growth, particularly in the north-oriented wetter site, where hosts presented higher growth rates during wet periods. The negative impact of low summer precipitation on juniper growth overrides the effects due to dwarf mistletoe infestation. Aridification and mistletoe infestation could trigger dieback and mortality of shrubs slowing down successional dynamics and delaying shrub encroachment into former croplands and grasslands.


Author(s):  
Yun Zhang ◽  
Dingcai Yin ◽  
Mei Sun ◽  
Hang Wang ◽  
Kun Tian ◽  
...  

Improved understanding of climate-growth relationships of multi-species is fundamental to understand and predict response of forest growth to future climate change. Forests are mainly composed of conifers in Northwestern Yunnan Plateau, but variations of growth response to climates among the species are not well understood. To detect growth response of multiple species to climate change, we developed residual chronologies of four major conifers, i.e. Abies georgei, Picea likiangensis, Pinus densata and Larix potaninii at upper distributional limits in Shika Snow Mountain. By using dendroclimatology method, we analyzed correlations between the residual chronologies and climate variables. The results showed that conifer radial growth was influenced by both temperature and precipitation in Shika Snow Mountain. Previous November temperature, previous July mean maximum temperature (Tmax) and current June precipitation were the common climatic factors, which had consistent influences on radial growth of four species. Temperature in previous post growing season (September–October) and current growing season (June-August), and precipitation in previous August were the common climatic factors, which had divergent impacts on four species radial growth. Current May Tmax and early growing season (April-May) precipitation showed positive and negative influences on growth of P. likiangensis, respectively. Temperature in current post growing season positively affected growth of A. georgei. According to the prediction of climate models and our understanding in growth response of four species to climate variables, we may understand growth response to climate change at species level. It is difficult to predict future forest growth in the study area, since future climate change might cause both increases or decreases for four species and indirect effects of climate change on forest should be considered.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1015
Author(s):  
Xuan Wu ◽  
Liang Jiao ◽  
Dashi Du ◽  
Changliang Qi ◽  
Ruhong Xue

It is important to explore the responses of radial tree growth in different regions to understand growth patterns and to enhance forest management and protection with climate change. We constructed tree ring width chronologies of Picea crassifolia from different regions of the Qilian Mountains of northwest China. We used Pearson correlation and moving correlation to analyze the main climate factors limiting radial growth of trees and the temporal stability of the growth–climate relationship, while spatial correlation is the result of further testing the first two terms in space. The conclusions were as follows: (1) Radial growth had different trends, showing an increasing followed by a decreasing trend in the central region, a continuously increasing trend in the eastern region, and a gradually decreasing trend in the isolated mountain. (2) Radial tree growth in the central region and isolated mountains was constrained by drought stress, and tree growth in the central region was significantly negatively correlated with growing season temperature. Isolated mountains showed a significant negative correlation with mean minimum of growing season and a significant positive correlation with total precipitation. (3) Temporal dynamic responses of radial growth in the central region to the temperatures and SPEI (the standardized precipitation evapotranspiration index) in the growing season were unstable, the isolated mountains to total precipitation was unstable, and that to SPEI was stable. The results of this study suggest that scientific management and maintenance plans of the forest ecosystem should be developed according to the response and growth patterns of the Qinghai spruce to climate change in different regions of the Qilian Mountains.


2003 ◽  
Vol 33 (5) ◽  
pp. 847-853 ◽  
Author(s):  
Sylvia E Welke ◽  
Graeme D Hope ◽  
Gary A Hunt

The effect of timber harvesting on the biomass, nutrient standing crop, and decomposition of fine roots (<2 mm) was studied in a high elevation, Engelmann spruce (Picea engelmannii Parry ex Engelm.) – subalpine fir (Abies lasiocarpa (Hook.) Nutt.) forest. Root dynamics were compared in openings of different sizes. The sequential core method was used to collect fine root samples over 4 years. Differences in fine root biomass between opening sizes were most significant for the active fine root portion and were most pronounced in the fall compared with the spring. Active fine root biomass was significantly lower in the 10-ha clearcuts (164 kg/ha) compared with control plots (275 kg/ha). Furthermore, active fine root biomass was often lower in the 1.0-ha opening than in the 0.1-ha and control plots. A similar trend was established for inactive fine root biomass, although this was not consistent over sampling years. Nutrient concentrations of K, but no other elements, were higher in control plots. Nutrient standing crops, however, followed trends observed in fine root biomass. In the 10-ha clearcuts, the largest changes in fine root biomass occurred at the edge of the opening. The findings suggest that small (<10 ha) cutblocks may maintain greater fine root longevity.


Sign in / Sign up

Export Citation Format

Share Document