Spread of Ca2+ in the sarcomere during fast and slow activation of mammalian cardiac myocytes

2001 ◽  
Vol 79 (1) ◽  
pp. 82-86
Author(s):  
Masato Konishi ◽  
Yoichiro Kusakari ◽  
Kenichi Hongo ◽  
Satoshi Kurihara

A multi-compartment model was used to estimate Ca2+ gradients in a sarcomere of a cardiac myocyte. The mathematical model assumed Ca2+ release from the sarcoplasmic reticulum as a driving function, and calculated Ca2+ binding to myoplasmic buffers, Ca2+ uptake by the sarcoplasmic reticulum, and diffusion of Ca2+ (and the buffers). During the fast Ca2+ transient similar to those observed during a twitch, the model predicted a large Ca2+ gradient in the sarcomere. A trajectory of the instantaneous relation between spatially averaged concentrations of Ca2+ and the Ca2+-troponin complex showed a counterclockwise loop, indicating non-equilibrium Ca2+ binding to troponin. During slow changes in [Ca2+] with time to peaks of ~500 ms or longer, the gradient of [Ca2+] was largely dissipated and the apparent equilibrium of the Ca2+-troponin binding reaction was suggested with little hysteresis of the trajectory. We conclude that a steady-state relation between [Ca2+] and mechanical activity can be achieved uniformly in the sarcomere by slowing the rate of Ca2+ release from the sarcoplasmic reticulum.Key words: calcium, troponin, cardiac myocytes, mathematical model.

2018 ◽  
Vol 5 (2) ◽  
pp. 171462 ◽  
Author(s):  
Xudong Chen ◽  
Yundi Feng ◽  
Yunlong Huo ◽  
Wenchang Tan

Ca 2+ sparks and Ca 2+ quarks, arising from clustered and rogue ryanodine receptors (RyRs), are significant Ca 2+ release events from the junctional sarcoplasmic reticulum (JSR). Based on the anomalous subdiffusion of Ca 2+ in the cytoplasm, a mathematical model was developed to investigate the effects of rogue RyRs on Ca 2+ sparks in cardiac myocytes. Ca 2+ quarks and sparks from the stochastic opening of rogue and clustered RyRs are numerically reproduced and agree with experimental measurements. It is found that the stochastic opening Ca 2+ release units (CRUs) of clustered RyRs are regulated by free Ca 2+ concentration in the JSR lumen (i.e. [Ca 2+ ] lumen ). The frequency of spontaneous Ca 2+ sparks is remarkably increased by the rogue RyRs opening at high [Ca 2+ ] lumen , but not at low [Ca 2+ ] lumen . Hence, the opening of rogue RyRs contributes to the formation of Ca 2+ sparks at high [Ca 2+ ] lumen . The interplay of Ca 2+ sparks and Ca 2+ quarks has been discussed in detail. This work is of significance to provide insight into understanding Ca 2+ release mechanisms in cardiac myocytes.


2008 ◽  
Vol 295 (4) ◽  
pp. H1615-H1625 ◽  
Author(s):  
Jianliang Song ◽  
Xue-Qian Zhang ◽  
JuFang Wang ◽  
Ellina Cheskis ◽  
Tung O. Chan ◽  
...  

Phospholemman (PLM) regulates cardiac Na+/Ca2+ exchanger (NCX1) and Na+-K+-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser68, disinhibits Na+-K+-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na+-K+-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca2+-ATPase levels, and retained near normal contractility, but α1-subunit of Na+-K+-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca2+ concentration ([Ca2+]i) transients reverted back to those observed in cultured WT myocytes. Both Na+-K+-ATPase current ( Ipump) and Na+/Ca2+ exchange current ( INaCa) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of INaCa but had no effect on Ipump. Contractility, [Ca2+]i transient amplitudes, and sarcoplasmic reticulum Ca2+ contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on INaCa but decreased Ipump. Contractility, [Ca2+]i transient amplitudes, and sarcoplasmic reticulum Ca2+ contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca2+]i homeostasis primarily by its direct inhibitory effects on Na+/Ca2+ exchange.


2001 ◽  
Vol 35 (3) ◽  
pp. 224-231 ◽  
Author(s):  
Hyun M Yang

OBJECTIVE: Sensitivity analysis was applied to a mathematical model describing malaria transmission relating global warming and local socioeconomic conditions. METHODS: A previous compartment model was proposed to describe the overall transmission of malaria. This model was built up on several parameters and the prevalence of malaria in a community was characterized by the values assigned to them. To assess the control efforts, the model parameters can vary on broad intervals. RESULTS: By performing the sensitivity analysis on equilibrium points, which represent the level of malaria infection in a community, the different possible scenarios are obtained when the parameters are changed. CONCLUSIONS: Depending on malaria risk, the efforts to control its transmission can be guided by a subset of parameters used in the mathematical model.


1988 ◽  
Vol 91 (1) ◽  
pp. 133-155 ◽  
Author(s):  
M C Capogrossi ◽  
M D Stern ◽  
H A Spurgeon ◽  
E G Lakatta

We hypothesized that the occurrence of spontaneous Ca2+ release from the sarcoplasmic reticulum (SR), in diastole, might be a mechanism for the saturation of twitch potentiation common to a variety of inotropic perturbations that increase the total cell Ca. We used a videomicroscopic technique in single cardiac myocytes to quantify the amplitude of electrically stimulated twitches and to monitor the occurrence of the mechanical manifestation of spontaneous SR Ca2+ release, i.e., the spontaneous contractile wave. In rat myocytes exposed to increasing bathing [Ca2+] (Cao) from 0.25 to 10 mM, the Cao at which the peak twitch amplitude occurred in a given cell was not unique but varied with the rate of stimulation or the presence of drugs: in cells stimulated at 0.2 Hz in the absence of drugs, the maximum twitch amplitude occurred in 2 mM Cao; a brief exposure to 50 nM ryanodine before stimulation at 0.2 Hz shifted the Cao of the maximum twitch amplitude to 7 mM. In cells stimulated at 1 Hz in the absence of drugs, the maximum twitch amplitude occurred in 4 mM Cao; 1 microM isoproterenol shifted the Cao of the maximum twitch amplitude to 3 mM. Regardless of the drug or the stimulation frequency, the Cao at which the twitch amplitude saturated varied linearly with the Cao at which spontaneous Ca2+ release first occurred, and this relationship conformed to a line of identity (r = 0.90, p = less than 0.001, n = 25). The average peak twitch amplitude did not differ among these groups of cells. In other experiments, (a) the extent of rest potentiation of the twitch amplitude in rat myocytes was also limited by the occurrence of spontaneous Ca2+ release, and (b) in both rat and rabbit myocytes continuously stimulated in a given Cao, the twitch amplitude after the addition of ouabain saturated when spontaneous contractile waves first appeared between stimulated twitches. A mathematical model that incorporates this interaction between action potential-mediated SR Ca2+ release and the occurrence of spontaneous Ca2+ release in individual cells predicted the shape of the Cao-twitch relationship observed in other studies in intact muscle. Thus, the occurrence of spontaneous SR Ca2+ release is a plausible mechanism for the saturation of the inotropic response to Ca2+ in the intact myocardium.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1301
Author(s):  
Agnieszka Krychowska ◽  
Marian Kordas ◽  
Maciej Konopacki ◽  
Bartłomiej Grygorcewicz ◽  
Daniel Musik ◽  
...  

This study presents the procedure of deriving a compartmental model (CM) based on an analysis obtained from the computational fluid dynamics (CFD) model of a bioreactor. The CM is composed of two parts, a structural (that takes into account the architecture of the mathematical model), and a parametric part (which contains the extrinsic parameters of the model). The CM is composed of the branches containing the set of perfectly mixed continuous stirred-tank reactors (CSTRs) in a configuration that matches the bioreactor’s flow patterns. Therefore, this work’s main objective was to develop a mathematical model that incorporated the flow field obtained by CFD technique. The proposed mathematical model was validated by means of the experimental data in the form of the residence time distribution (RTD) measurements.


2011 ◽  
Vol 300 (5) ◽  
pp. H1794-H1805 ◽  
Author(s):  
Wei Chen ◽  
Gary Aistrup ◽  
J. Andrew Wasserstrom ◽  
Yohannes Shiferaw

In cardiac myocytes, calcium (Ca) can be released from the sarcoplasmic reticulum independently of Ca influx from voltage-dependent membrane channels. This efflux of Ca, referred to as spontaneous Ca release (SCR), is due to Ryanodine receptor fluctuations, which can induce spontaneous Ca sparks, which propagate to form Ca waves. This release of Ca can then induce delayed after-depolarizations (DADs), which can lead to arrhythmogenic-triggered activity in the heart. However, despite its importance, to date there is no mathematical model of SCR that accounts for experimentally observed features of subcellular Ca. In this article, we present an experimentally based model of SCR that reproduces the timing distribution of spontaneous Ca sparks and key features of the propagation of Ca waves emanating from these spontaneous sparks. We have coupled this model to an ionic model for the rabbit ventricular action potential to simulate SCR within several thousand cells in cardiac tissue. We implement this model to study the formation of an ectopic beat on a cable of cells that exhibit SCR-induced DADs.


2002 ◽  
Vol 83 (6) ◽  
pp. 3134-3151 ◽  
Author(s):  
Anushka Michailova ◽  
Franco DelPrincipe ◽  
Marcel Egger ◽  
Ernst Niggli

Author(s):  
Olexandr Pavlenko ◽  
Serhii Dun ◽  
Maksym Skliar

In any economy there is a need for the bulky goods transportation which cannot be divided into smaller parts. Such cargoes include building structures, elements of industrial equipment, tracked or wheeled construction and agricultural machinery, heavy armored military vehicles. In any case, tractor-semitrailer should provide fast delivery of goods with minimal fuel consumption. In order to guarantee the goods delivery, tractor-semitrailers must be able to overcome the existing roads broken grade and be capable to tow a semi-trailer in off-road conditions. These properties are especially important for military equipment transportation. The important factor that determines a tractor-semitrailer mobility is its gradeability. The purpose of this work is to improve a tractor-semitrailer mobility with tractor units manufactured at PJSC “AutoKrAZ” by increasing the tractor-semitrailer gradeability. The customer requirements for a new tractor are determined by the maximizing the grade to 18°. The analysis of the characteristics of modern tractor-semitrailers for heavy haulage has shown that the highest rate of this grade is 16.7°. The factors determining the limiting gradeability value were analyzed, based on the tractor-semitrailer with a KrAZ-6510TE tractor and a semi-trailer with a full weight of 80 t. It has been developed a mathematical model to investigate the tractor and semi-trailer axles vertical reactions distribution on the tractor-semitrailer friction performances. The mathematical model has allowed to calculate the gradeability value that the tractor-semitrailer can overcome in case of wheels and road surface friction value and the tractive force magnitude from the engine. The mathematical model adequacy was confirmed by comparing the calculations results with the data of factory tests. The analysis showed that on a dry road the KrAZ-6510TE tractor with a 80 t gross weight semitrailer is capable to climb a gradient of 14,35 ° with its coupling mass full use condition. The engine's maximum torque allows the tractor-semitrailer to overcome a gradient of 10.45° It has been determined the ways to improve the design of the KrAZ-6510TE tractor to increase its gradeability. Keywords: tractor, tractor-semitrailer vehicle mobility, tractor-semitrailer vehicle gradeability.


Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


Sign in / Sign up

Export Citation Format

Share Document