BICYCLE ERGOMETER MEASUREMENT OF MAXIMAL OXYGEN UPTAKE IN CHILDREN

1967 ◽  
Vol 45 (6) ◽  
pp. 937-946 ◽  
Author(s):  
Gordon R. Cumming ◽  
Werner Friesen

Seven to 15 maximal exercise tests on a cycle ergometer were done on twenty boys, 11 to 15 years of age, until the work load was sufficiently high that it could not be sustained for 3 min. The mean maximal pulse rate was 202 beats/min, and the mean maximal oxygen uptake was 53.8 ml/kg per min. A plateau of the oxygen uptake curve occurred in only 7 of the 20 subjects, whereas the pulse rate reached a plateau in 13 subjects. On the basis of the pulse rate – work load straight line relationship for submaximal exercise, the intensity of the load that the subjects were able to complete was such that a mean predicted pulse rate of 247 beats/min would have resulted. This information can be utilized to obtain maximal oxygen uptake from a single test in children.

1978 ◽  
Vol 45 (1) ◽  
pp. 64-68 ◽  
Author(s):  
J. S. Petrofsky ◽  
A. R. Lind

Three well-trained male subjects served as volunteers in these experiments to examine the physiological capacity for extended work during lifting tasks. The maximal oxygen uptake (VO2max) during lifting was always lower than work on the bicycle ergometer. However, the work load during lifting which could be maintained for 1--4 h was 50% of the VO2max for lifting each specific weight of box; the limit for lifting light boxes without fatigue was at an oxygen uptake of about 25% of the VO2max obtained from bicycle ergometry. Significant fatigue in the forearm muscles was found during prolonged lifting as assessed from the endurance of isometric contractions and from the surface electromyogram (EMG), and was more pronounced as the weight of the box increased.


1981 ◽  
Vol 59 (11) ◽  
pp. 1146-1154 ◽  
Author(s):  
S. G. Thomas ◽  
D. A. Cunningham ◽  
M. J. Plyley ◽  
D. R. Boughner ◽  
R. A. Cook

The role of central and peripheral adaptations in the response to endurance training was examined. Changes in cardiac structure and function, oxygen extraction, and muscle enzyme activities following one-leg training were studied.Eleven subjects (eight females, three males) trained on a cycle ergometer 4 weeks with one leg (leg 1), then 4 weeks with the second leg (leg 2). Cardiovascular responses to exercise with both legs and each leg separately were evaluated at entry (T1), after 4 weeks of training (T2), and after a second 4 weeks of training (T3). Peak oxygen uptake ([Formula: see text] peak) during exercise with leg 1 (T1 to T2 increased 19.8% (P < 0.05) and during exercise with leg 2 (T2 to T3 increased 16.9% (P < 0.05). Maximal oxygen uptake with both legs increased 7.9% from T1 to T2 and 9.4% from T2 to T3 (P < 0.05). During exercise at 60% of [Formula: see text] peak, cardiac output [Formula: see text] was increased significantly only when the trained leg was exercised. [Formula: see text] increased 12.2% for leg 1 between T1 and T2 and 13.0% for leg 2 between T2 and T3 (P < 0.05). M-mode echocardiographic assessment of left ventricular internal diameter at diastole and peak velocity of circumferential fibre shortening at rest or during supine cycle ergometer exercise at T1 and T3 revealed no training induced changes in cardiac dimensions or function. Enzyme analysis of muscle biopsy samples from the vastus lateralis (At T1, T2, T3) revealed no consistent pattern of change in aerobic (malate dehydrogenase and 3-hydroxyacyl-CoA dehydrogenase) or anaerobic (phosphofructokinase, lactate dehydroginase, and creatine kinase) enzyme activities. Increases in cardiac output and maximal oxygen uptake which result from short duration endurance training can be achieved, therefore, without measurable central cardiac adaptation. The absence of echocardio-graphically determined changes in cardiac dimensions and contractility and the absence of an increase in cardiac output during exercise with the nontrained leg following training of the contralateral limb support this conclusion.


1965 ◽  
Vol 20 (3) ◽  
pp. 509-513 ◽  
Author(s):  
R. G. Glassford ◽  
G. H. Y. Baycroft ◽  
A. W. Sedgwick ◽  
R. B. J. Macnab

Twenty-four male subjects aged 17–33 were given three direct tests of maximal oxygen uptake and one indirect test. The direct tests were those of Mitchell, Sproule, and Chapman (treadmill); Taylor, Buskirk, and Henschel (treadmill); and Åstrand (bicycle ergometer). The indirect test was the Åstrand-Ryhming nomogram (bicycle ergometer) employing heart rate response to submaximal work. In addition, the Johnson, Brouha, and Darling physical fitness test was administered. The two treadmill tests and the indirect test yielded significantly higher mean values than did the direct bicycle test. However no other significant differences in mean values occurred. Correlation coefficients between the various oxygen uptake tests as well as the fitness test were all found to be significant (.62–.83), i.e., greater than zero. No correlation obtained proved to be significantly greater than any other. The results indicate that direct treadmill tests, employing greater muscle mass, yield higher maximal oxygen uptake values (8%) than does the direct bicycle ergometer test. The Åstrand-Ryhming nomogram appears to produce a good estimation of maximal oxygen uptake, in a population unaccustomed to cycling. erobic capacity; exercise; heart rate Submitted on September 17, 1964


1962 ◽  
Vol 17 (1) ◽  
pp. 47-50 ◽  
Author(s):  
B. Issekutz ◽  
N. C. Birkhead ◽  
K. Rodahl

Oxygen uptake and carbon dioxide output were measured in 32 untrained subjects during exercise on the bicycle ergometer. It was shown that the work respiratory quotient (RQ) under standardized conditions can be used as a measure of physical fitness. ΔRQ (work RQ minus 0.75) increases logarithmically with the work load and maximal O2 uptake is reached at a ΔRQ value of 0.40. This observation offered the possibility of predicting the maximal O2 uptake of a person, based on the measurement of RQ during a single bicycle ergometer test at a submaximal load. For each work RQ between 0.95 and 1.15 a factor was presented, together with the aid of a simple equation, which gave a good approximation (generally better than ±10%) of the maximal O2 uptake.


1980 ◽  
Vol 48 (6) ◽  
pp. 1083-1091 ◽  
Author(s):  
R. Casaburi ◽  
R. W. Stremel ◽  
B. J. Whipp ◽  
W. L. Beaver ◽  
K. Wasserman

The effects of hyperoxia on ventilatory and gas exchange dynamics were studied utilizing sinusoidal work rate forcings. Five subjects exercised on 14 occasions on a cycle ergometer for 30 min with a sinusoidally varying work load. Tests were performed at seven frequencies of work load during air or 100% O2 inspiration. From the breath-by-breath responses to these tests, dynamic characteristics were analyzed by extracting the mean level, amplitude of oscillation, and phase lag for each six variables with digital computer techniques. Calculation of the time constant (tau) of the ventilatory responses demonstrated that ventilatory kinetics were slower during hyperoxia than during normoxia (P less than 0.025; avg 1.56 and 1.13 min, respectively). Further, for identical work rate fluctuations, end-tidal CO2 tension fluctuations were increased by hyperpoxia. Ventilation during hyperoxia is slower to respond to variations in the level of metabolically produced CO2, presumably because hyperoxia attenuates carotid body output; the arterial CO2 tension is consequently less tightly regulated.


1975 ◽  
Vol 39 (1) ◽  
pp. 135-144 ◽  
Author(s):  
B. J. Clark ◽  
R. F. Coburn

Changes in intracellular Po2 in myoglobin containing skeletal muscle during exercise were estimated in normal nonathlete subjects from measurements of shifts of CO between blood and muscle under conditions where the total body CO stores remained constant. Exercise was performed on a bicycle ergometer. In 1.5–2 and 6–7 min runs at Vo2 max with the subject breathing 21% O2, mean MbCO/HbCO increased 146 +/- 7 and 163 +/- 11% of resting values, respectively (P less than 0.05). With the subjects breathing 13–14% O2, in 1.5–2 and 6–7 min runs, Vo2 max fell an average of 4.3 +/- 5.1% and 12.0 +/- 5.2%, respectively, and mean MbCO/HbCO increased to 233 +/- 18% and 210 +/- 52% of resting value, respectively (P less than 0.05). These findings suggest that mean myoglobin Po2 fell during exercise at Vo2 max, with the subjects breathing 21% O2 and the decrease in mean myoglobin Po2 was greater with the subject breathing 13–14% O2. There was considerable variability in different subjects and in some, the data were not consistent with intracellular O2 availability limiting aerobic metabolism. The data support a postulate that there are several limiting factors for the aerobic capacity, including intracellular O2 availability.


1996 ◽  
Vol 82 (2) ◽  
pp. 419-424 ◽  
Author(s):  
Antonios K. Travlos ◽  
Daniel Q. Marisi

This study was conducted to investigate the influence of fitness level and gradually increased amounts of exercise on individuals' ratings of perceived exertion (RPE). 20 men served as paid subjects. They were divided into groups of high (>56 ml/kg/min.) and low fitness (<46 ml/kg/min.) according to their maximal oxygen uptake (VO2 max). Participants were required to pedal on a cycle ergometer at a progressively increased workload (every 10 min.) corresponding to 40, 50, 60, 70, and 80% of individual VO2 max values. Heart rates, RPE, and core temperatures were recorded every 5th minute after the initiation of exercising at a specific workload. Analysis indicated that, when controlling for VO2 max values, elevations of heart rate and core temperature were not affected by fitness. However, highly fit individuals perceived themselves under less exertion than did the group low in fitness. Correlations showed that, taking into consideration fitness, there is a stronger relationship between RPE and heart rate and RPE and core temperature for the highly fit individuals than for the less fit.


2020 ◽  
Vol 45 (5) ◽  
pp. 486-492 ◽  
Author(s):  
Justine Schneider ◽  
Kathrin Schlüter ◽  
Joachim Wiskemann ◽  
Friederike Rosenberger

Cancer survivors demonstrate a reduced maximal oxygen uptake, which is clinically relevant in terms of overall survival. However, it remains uncertain whether they attain their “true maximal oxygen uptake” in a cardiopulmonary exercise test (CPET). In the present study, a supramaximal verification bout (Verif) was applied in cancer survivors to confirm attainment of maximal oxygen uptake. Seventy-five participants (age, 61 ± 12 years; n = 43 females with breast cancer and n = 32 males with prostate cancer, 6–52 weeks after primary therapy) performed a CPET on a cycle ergometer and a Verif at 110% peak power output. As verification criterion, maximal oxygen uptake in Verif should not exceed maximal oxygen uptake in CPET by >3%. On average, maximal oxygen uptake was significantly lower in Verif compared with CPET (1.60 ± 0.38 L·min–1 vs. 1.65 ± 0.36 L·min–1, p = .023). On the individual level, n = 51 (68%) satisfied the verification criterion, whereas n = 24 (32%) demonstrated a higher maximal oxygen uptake in Verif. n = 69 (92%) fulfilled ≥2 secondary criteria for maximal exhaustion in the CPET. While maximal oxygen uptake was not underestimated in the CPET on average, one-third of cancer survivors did not attain their true maximal oxygen uptake. Verif appears feasible and beneficial to confirm true maximal oxygen uptake in this population. Furthermore, it might be more reliable than secondary criteria for maximal exhaustion. Novelty In about one-third of cancer survivors, maximal oxygen uptake is underestimated by a CPET. This underestimation of maximal oxygen uptake is not necessarily indicated by secondary criteria for maximal exhaustion. A supramaximal verification bout appears feasible and helpful for the determination of maximal oxygen uptake in cancer survivors.


Sports ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 217 ◽  
Author(s):  
Arne Sørensen ◽  
Tore Kristian Aune ◽  
Vegar Rangul ◽  
Terje Dalen

Cycling is a popular sport, and evaluation of the validity of tests to predict performance in competitions is important for athletes and coaches. Similarity between performance in sprints in mass-start bike races and in the laboratory is found, but, to our knowledge, no studies have investigated the relationship between laboratory measurements of maximal oxygen uptake (VO2max) and functional threshold power (FTP) with performance in official mass-start competitions. The purpose of this study was to evaluate the validity of a 20 min FTP test and VO2max as predictors for performance in an official mountain bike competition. Eleven moderately trained male cyclists at a local level participated in this study (age: 43 ± 5.1 years; height: 183.4 ± 5.4 m; weight: 84.4 ± 8.7 kg; body mass index: 25.1 ± 2.1). All subjects performed a 20 min FTP test in the laboratory to measure the mean power. In addition, the subjects completed an incremental test to exhaustion to determine VO2max. These two laboratory tests were analyzed together with the results from a 47 km mass-start mountain bike race, with a total elevation of 851 m. A significant relationship was found between the mean relative power (W/kg) for the 20 min FTP test and performance time in the race (r = −0.74, P < 0.01). No significant correlation was found between VO2max and cycling performance for these subjects (r = −0.37). These findings indicate that a 20 min FTP test is a more valid test for prediction of performance in mass-start bike races than a VO2max test for moderately trained cyclists.


Sign in / Sign up

Export Citation Format

Share Document