A 7-year life cycle for two Chironomus species in arctic Alaskan tundra ponds (Diptera: Chironomidae)

1982 ◽  
Vol 60 (1) ◽  
pp. 58-70 ◽  
Author(s):  
Malcolm G. Butler

The life cycles of two sibling Chironomus species inhabiting tundra ponds on the arctic coast of Alaska are interpreted from larval and adult data collected over 3 years. Emergence of adults was highly synchronous within each species, and the two emergence periods were always discrete. Larvae of the two species could not be separated morphologically and were treated as a single population through most of the life cycle. Analysis of larval size and development toward pupation indicated that seven cohorts coexist on nearly all sampling dates. A 7-year developmental period for each cohort is hypothesized and is supported by larval growth rates observed in the habitat and by the rates at which apparent cohorts progressed through the larval stages. Ten cohorts observed during the study period showed very similar schedules of growth and development, but cohort abundances varied considerably.This life cycle is among the longest reported for an arctic insect. It results from slow growth during an annual open-water season of about 90 days, though neither food nor temperature limitation could be definitely implicated in causing such slow growth. Coexistence of up to seven cohorts in each species stabilized Chironomus production and standing stock and may be important to benthic-feeding waterfowl which use these ponds.

Author(s):  
Jan A. Pechenik

I have a Hardin cartoon on my office door. It shows a series of animals thinking about the meaning of life. In sequence, we see a lobe-finned fish, a salamander, a lizard, and a monkey, all thinking, “Eat, survive, reproduce; eat, survive, reproduce.” Then comes man: “What's it all about?” he wonders. Organisms live to reproduce. The ultimate selective pressure on any organism is to survive long enough and well enough to pass genetic material to a next generation that will also be successful in reproducing. In this sense, then, every morphological, physiological, biochemical, or behavioral adaptation contributes to reproductive success, making the field of life cycle evolution a very broad one indeed. Key components include mode of sexuality, age and size at first reproduction (Roff, this volume), number of reproductive episodes in a lifetime, offspring size (Messina and Fox, this volume), fecundity, the extent to which parents protect their offspring and how that protection is achieved, source of nutrition during development, survival to maturity, the consequences of shifts in any of these components, and the underlying mechanisms responsible for such shifts. Many of these issues are dealt with in other chapters. Here I focus exclusively on animals, and on a particularly widespread sort of life cycle that includes at least two ecologically distinct free-living stages. Such “complex life cycles” (Istock 1967) are especially common among amphibians and fishes (Hall and Wake 1999), and within most invertebrate groups, including insects (Gilbert and Frieden 1981), crustaceans, bivalves, gastropods, polychaete worms, echinoderms, bryozoans, and corals and other cnidarians (Thorson 1950). In such life cycles, the juvenile or adult stage is reached by metamorphosing from a preceding, free-living larval stage. In many species, metamorphosis involves a veritable revolution in morphology, ecology, behavior, and physiology, sometimes taking place in as little as a few minutes or a few hours. In addition to the issues already mentioned, key components of such complex life cycles include the timing of metamorphosis (i.e., when it occurs), the size at which larvae metamorphose, and the consequences of metamorphosing at particular times or at particular sizes. The potential advantages of including larval stages in the life history have been much discussed.


1989 ◽  
Vol 67 (3) ◽  
pp. 552-558 ◽  
Author(s):  
I. A. McLaren ◽  
Estelle Laberge ◽  
C. J. Corkett ◽  
J.-M. Sévigny

The primarily arctic Pseudocalanus acuspes, relict in Bedford Basin, Nova Scotia, produces a first generation (G1) in late winter; most G1 individuals mature in late spring. The G1 then produces a G2, most of which "rest" in copepodite stages III and IV until early winter. These stages store large amounts of lipid in early summer, which slowly diminish subsequently. A small number of G2 individuals continue to develop at temperature-dependent rates, maturing in early autumn and producing G3 adults in November. Copepodites developing in winter and spring store less lipid. The primarily arctic Pseudocalanus minutus, rare in Bedford Basin and on the Scotia Shelf, is strictly annual, developing to a lipid-filled copepodite stage V after spawning in late winter. The arctic–temperate Pseudocalanus newmani is abundant on the Scotian Shelf, but may not be self-sustaining when advected into Bedford Basin. It stores little lipid and appears to have at least three mature generations at temperature-dependent intervals over Browns Bank between May and November. It may rest in winter, or its life-cycle synchrony by spring could result from food-limited development during winter. The temperate Pseudocalanus moultoni appears to have a life cycle similar to that of P. newmani, but was less common during summer on Browns Bank. These life cycles are appropriately adapted to the geographical ranges of the species, and show some parallels with species of Calanus.


2011 ◽  
Vol 86 (2) ◽  
pp. 165-172 ◽  
Author(s):  
M.O. Al-Jahdali ◽  
R.M. El-Said Hassanine

AbstractAlthough nothing is known about gyliauchenid life cycles, molecular phylogenetic studies have placed the Gyliauchenidae Fukui, 1929 close to the Lepocreadiidae Odhner, 1905. The gyliauchenidGyliauchen volubilisNagaty, 1956 was found in the intestine of its type-host,Siganus rivulatus, a siganid fish permanently resident in a lagoon within the mangrove swamps on the Egyptian coast of the Gulf of Aqaba. Larval forms of this trematode (mother sporocysts, rediae and cercariae) were found in the gonads and digestive gland ofClypeomorus clypeomorus(Gastropoda: Cerithiidae), a common snail in the same lagoon. So, this life cycle ofG. volubiliswas elucidated under natural conditions: eggs are directly ingested by the snail; mother sporocysts and rediae reach their maturity 3–6 and 11–13 weeks post-infection; rediae contain 23–29 developing cercariae; fully developed cercariae are gymnocephalus, without penetration glands, emerge from the snail during the night 16–18 weeks post-infection and rapidly encyst on aquatic vegetation (no second intermediate host); encysted metacercariae are not progenetic; 4-day-old metacercariae encysted on filamentous algae fed toS. rivulatusdeveloped into fully mature worms 6–8 weeks post-infection. The cycle was completed in about 26 weeks and followed one of the three known patterns of lepocreadiid life cycles, and except for the gymnocephalus cercariae, the other larval stages are very similar to those of lepocreadiids. Generally, the life cycle ofG. volubilisimplicitly supports the phylogenetic relationship of Gyliauchenidae and Lepocreadiidae inferred from molecular phylogenetic studies.


Author(s):  
Peter Bryant ◽  
Timothy Arehart

Crustacea larvae and adults make up a large fraction of the biomass and number of organisms in both holoplankton (organisms that spend their entire lives in the plankton) and meroplankton (organisms that spend their larval stages in the plankton). The life cycles of these animals can be studied by raising individuals and studying them longitudinally in the laboratory, but this method can be very laborious. Here we show that DNA sequencing of a small element in the mitochondrial DNA (DNA barcoding) makes it possible to easily link life-cycle phases without the need for laboratory rearing. It can also be used to construct taxonomic trees, although it is not yet clear to what extent this barcode-based taxonomy reflects more traditional morphological or molecular taxonomy. Collections of zooplankton were made using conventional plankton nets in Newport Bay and the Pacific Ocean near Newport Beach, California, and individual crustacean specimens were documented by videomicroscopy. Adult crustaceans were collected from solid substrates in the same areas. Specimens were preserved in ethanol and sent to the Canadian Centre for DNA Barcoding at the University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. From 1042 specimens, 609 COI sequences were obtained falling into 169 Barcode Identification Numbers (BINs), of which 85 correspond to recognized species. The results show the utility of DNA barcoding for matching life-cycle stages as well as for documenting the diversity of this group of organisms.


<em>Abstract</em>.-We develop the view, based on life cycle differences and recently published sister group relationships, that the freshwater life cycle was the ancestral character state leading to anadromy among salmoniforms, whereas the marine life cycle was the ancestral character state leading to anadromy among osmeriforms. In contrast to most salmonid fishes, the reproductive migrations of smelts are generally characterized by brief excursions to spawn in freshwater, and larvae may spend no more than 24 h in freshwater before being transported to coastal marine or estuarine environments. We reconstructed the phylogeny of the suborder Osmeroidei to establish the phylogenetic relationships among anadromous, marine, and freshwater species of this taxon. We mapped these life cycles onto phylogenetic trees of osmeriforms and salmoniforms and applied character-reconstruction methodology based on simple parsimony and likelihood methodologies. A freshwater origin of salmonids was supported by our analyses, whereas either marine or anadromous life cycles characterized the evolution of osmeroids. The possibility that the evolution of anadromy in salmonids and osmeroids followed separate paths requires a reconsideration of some generalizations concerning anadromy. We hypothesize that anadromy in osmeroids may be first and foremost an adaptation to place embryos and the early larval stages in reproductive safe sites to maximize their survival. The evolution of exclusive freshwater species of osmeriforms has occurred via anadromy through the various processes associated with landlocking. Freshwater amphidromy in osmeroids is most likely a consequence of anadromy rather than a precursor and may be contingent upon the availability of food resources in freshwater. Finally, marine osmeroids have been derived from anadromous ancestors and are "safe-site" specialists, exploiting principally the upper intertidal zone for reproduction. We also suggest that such contrasting evolutionary pathways to anadromy may provide insight into the evolution of partial migration, observed uniquely in salmonids, and the nature and extent of population genetic structure found in the two groups of fishes.


Author(s):  
Malcolm G. Butler ◽  
Shane D. Braegelman

Developing at low mean temperatures, arctic chironomids often have prolonged larval growth yet adult emergence is typically a brief and highly synchronous event. How does a midge population achieve synchronous emergence? Under the Absolute Spring Species Hypothesis (AbSS), adult eclosion by early-emerging species may be synchronized by overwintering as fully mature larvae. Such prepupal larvae would neither feed nor grow after spring thaw, only pupate and emerge. The podonomine Trichotanypus alaskensis Brundin is an abundant midge in tundra ponds on Alaska’s Arctic Coastal Plain, and one of the earliest-emerging species in this chironomid-dominated insect community. T. alaskensis is univoltine in these arctic ponds, with most emergence from any one pond occurring within less than a one-week span during late June, typically about three weeks after pond thaw. We evaluated T. alaskensis for conformity to the AbSS model by documenting the overwintering state of this species in a tundra pond near Barrow, Alaska, then monitoring larval growth and development of the population from spring thaw to pupation. Most T. alaskensis were immature instar IV larvae when collected in late September of both 2010 and 2011, with 10-30% still in late instar III. Immediately after pond thaw in 2011, all collected larvae had imaginal disc primordia showing early stages of instar IV development. Within the first two weeks following pond thaw, most larvae had doubled their dry mass and developed into mature (prepupal) final-instar larvae. Highly synchronized emergence by T.  alaskensis is not a consequence of a population overwintering as fully-mature larvae, as per the Absolute Spring Species Hypothesis. Rather, larvae in a given tundra pond appear to develop synchronously throughout the life cycle, including a period of substantial growth and rapid prepupal development between spring thaw and early-summer emergence.


2017 ◽  
Vol 74 (6) ◽  
pp. 1859-1877 ◽  
Author(s):  
Cory Baggett ◽  
Sukyoung Lee

Abstract The dynamical mechanisms that lead to wintertime Arctic warming during the planetary-scale wave (PSW) and synoptic-scale wave (SSW) life cycles are identified by performing a composite analysis of ERA-Interim data. The PSW life cycle is preceded by localized tropical convection over the western Pacific. Upon reaching the midlatitudes, the PSWs amplify as they undergo baroclinic conversion and constructively interfere with the climatological stationary waves. The PSWs flux large quantities of sensible and latent heat into the Arctic, which produces a regionally enhanced greenhouse effect that increases downward IR and warms the Arctic 2-m temperature. The SSW life cycle is also capable of increasing downward IR and warming the Arctic 2-m temperature, but the greatest warming is accomplished in the subset of SSW events with the most amplified PSWs. Consequently, during both the PSW and SSW life cycles, wintertime Arctic warming arises from the amplification of the PSWs.


Author(s):  
Ted Habermann

The historic view of metadata as &ldquo;data about data&rdquo; is expanding to include data about other items that must be created, used and understood throughout the data and project life cycles. In this context, metadata might better be defined as the structured and standard part of documentation and the metadata life cycle can be described as the metadata content that is required for documentation in each phase of the project and data life cycles. This incremental approach to metadata creation is similar to the spiral model used in software development. Each phase also has distinct users and specific questions they need answers to. In many cases, the metadata life cycle involves hierarchies where latter phases have increased numbers of items. The relationships between metadata in different phases can be captured through structure in the metadata standard or through conventions for identifiers. Metadata creation and management can be streamlined and simplified by re-using metadata across many records. Many of these ideas are being used in metadata for documenting the life cycle of research projects in the Arctic.


1992 ◽  
Vol 124 (1) ◽  
pp. 167-187 ◽  
Author(s):  
H.V. Danks

AbstractSeveral insect species have life cycles that last more than 1 year, because of very slow growth, repeated or prolonged dormancies, or very long lived adults. These long life cycles are correlated with environmental adversities, such as cold or unpredictable temperatures, patchy, unreliable or low quality food supplies, and natural enemies, as well as with some other properties such as large size. Long life cycles are most prevalent when several of these factors are present simultaneously. Adversities tend to prolong the life cycle of all individuals in the population, whereas unpredictability tends to extend the life cycle of only some individuals. Extreme extensions, such as diapause for more than 10 years, usually affect only a very small fraction of the population. Modest extensions, such as development over 2 years, prolonged dormancy for one additional adverse season, cohort-splitting between 1- and 2-year life cycles, and oviposition over two seasons, are relatively common. Insects with long life cycles provide insights into the nature of adaptations to adverse and unpredictable conditions, and also provide useful material for the analysis of questions related to population and community structure.


2018 ◽  
pp. 375-402
Author(s):  
J. Antonio Baeza ◽  
Emiliano H. Ocampo ◽  
Tomás A. Luppi

In the subphylum Crustacea, species from most major clades have independently evolved symbiotic relationships with a wide variety of invertebrate and vertebrate hosts. Herein, we review the life cycle disparity in symbiotic crustaceans. Relatively simple life cycles with direct or abbreviated development can be found among symbiotic decapods, mysids, and amphipods. Compared to their closest free-living relatives, no major life cycle modifications were detected in these clades as well as in most symbiotic cirripeds. In contrast, symbiotic isopods, copepods, and tantulocarids exhibit complex life cycles with major differences compared to their closest free-living relatives. Key modifications in these clades include the presence of larval stages well endowed for dispersal and host infestation, and the use of up to 2 different host species with dissimilar ecologies throughout their ontogeny. Phylogenetic inertia and restrictions imposed by the body plan of some clades appear to be most relevant in determining life cycle modifications (or the lack thereof) from the “typical” ground pattern. Furthermore, the life cycle ground pattern is likely either constraining or favoring the adoption of a symbiotic lifestyle in some crustacean clades (e.g., in the Thecostraca).


Sign in / Sign up

Export Citation Format

Share Document