The developmental stages of Neobrachiella robusta (Wilson, 1912), a parasitic copepod of Sebastes (Teleostei: Scorpaeniformes)

1987 ◽  
Vol 65 (6) ◽  
pp. 1331-1336
Author(s):  
Z. Kabata

The morphology of the developmental stages of Neobrachiella robusta (Wilson, 1912) (Copepoda: Siphonostomatoida) is described. The copepod is parasitic on the gill rakers of Sebastes alutus (Gilbert, 1890) (Teleostei: Scorpaeniformes). The life cycle of this copepod consists of a copepodid stage, followed by four chalimus stages and a relatively long preadult stage, which undergoes extensive metamorphosis. The copepods aggregate on the outer row of long gill rakers of the first gill arch, as many as 97% of them being attached to these rakers. Some of the rakers become distorted, but a connection between the presence of N. robusta and these abnormalities could not be established.

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 638
Author(s):  
Monika Mazur ◽  
Daria Wojciechowska ◽  
Ewa Sitkiewicz ◽  
Agata Malinowska ◽  
Bianka Świderska ◽  
...  

The slime mold Dictyostelium discoideum’s life cycle includes different unicellular and multicellular stages that provide a convenient model for research concerning intracellular and intercellular mechanisms influencing mitochondria’s structure and function. We aim to determine the differences between the mitochondria isolated from the slime mold regarding its early developmental stages induced by starvation, namely the unicellular (U), aggregation (A) and streams (S) stages, at the bioenergetic and proteome levels. We measured the oxygen consumption of intact cells using the Clarke electrode and observed a distinct decrease in mitochondrial coupling capacity for stage S cells and a decrease in mitochondrial coupling efficiency for stage A and S cells. We also found changes in spare respiratory capacity. We performed a wide comparative proteomic study. During the transition from the unicellular stage to the multicellular stage, important proteomic differences occurred in stages A and S relating to the proteins of the main mitochondrial functional groups, showing characteristic tendencies that could be associated with their ongoing adaptation to starvation following cell reprogramming during the switch to gluconeogenesis. We suggest that the main mitochondrial processes are downregulated during the early developmental stages, although this needs to be verified by extending analogous studies to the next slime mold life cycle stages.


2005 ◽  
Vol 37 (5) ◽  
pp. 373-382 ◽  
Author(s):  
William B. SANDERS

The utility of plastic cover slips as a substratum for in situ study of lichen developmental stages is further explored in a neotropical foliicolous lichen community and in a European temperate corticolous community. Twenty-one months after placement in the tropical forest, the cover slips bore foliicolous lichen thalli with several species producing characteristic ascocarps and ascospores, indicating the suitability of the substratum for completion of the life cycle of these lichens. On cover slips placed within the temperate corticolous community, lichen propagules anchored to the substratum with relatively short attachment hyphae but did not develop further within the one year observation period. Intimately intermixed microbial communities of short-celled, mainly pigmented fungi and chlorophyte algae developed upon the transparent substratum. Among the algae, Trebouxia cells, often in groups showing cell division and without associated lichenizing hyphae, were commonly observed. The potential significance of the free-living populations in the life cycle of Trebouxia and in those of Trebouxia-associated lichen fungi is discussed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ainara Ballesteros ◽  
Carina Östman ◽  
Andreu Santín ◽  
Macarena Marambio ◽  
Mridvika Narda ◽  
...  

Pelagia noctiluca is considered the most important jellyfish in the Mediterranean Sea, due to its abundance and the severity of its stings. Despite its importance in marine ecosystems and the health problems caused by its massive arrival in coastal areas, little is known about its early life stages and its cnidome has never been described. This study of the morphological and anatomical features throughout the life cycle identifies four early stages: two ephyra and two metaephyra stages. Ephyra stage 1, newly developed from a planula, has no velar canals, gastric filaments or nematocyst batteries. Ephyra stage 2, has velar canals, a cruciform-shaped manubrium and gastric filaments. Metaephyra stage 3 has eight tentacle buds and nematocyst clusters for the first time. Lastly, in metaephyra stage 4, the eight primary tentacles grow nearly simultaneously, with no secondary tentacles. Complete nematocyst battery patterns gradually develop throughout the later life stages. Four nematocyst types are identified: a-isorhiza, A-isorhiza, O-isorhiza and eurytele. Of these, a-isorhiza and eurytele are the most important throughout the entire life cycle, while A-isorhiza and O-isorhiza have a more important role in advanced stages. All nematocysts show a positive correlation between increasing capsule volumes and increasing body diameter of the ephyrae, metaephyrae, young medusae and adult medusae. In the early stages, the volumes of euryteles in the gastric filaments are larger than those in the exumbrella, indicating that the capsule volume is critical in the absence of marginal tentacles, specialized for feeding. This study provides updated information, the most extensive description to date, including high-resolution photographs and schematic drawings of all the developmental stages in the life cycle of P. noctiluca. Additionally, the first cnidome characterization is provided for each stage to facilitate accurate identification of this species when collected in the water column, and to raise awareness of the potential for human envenomation.


Parasitology ◽  
2017 ◽  
Vol 145 (8) ◽  
pp. 1051-1058 ◽  
Author(s):  
J. P. Dubey ◽  
M. C. Jenkins

AbstractA time-course study was conducted to resolve discrepancies in the literature and better define aspects of the Eimeria maxima life cycle such, as sites of development and both morphology and number of asexual stages. Broiler chickens were inoculated orally with five million E. maxima oocysts (APU1), and were necropsied at regular intervals from 12 to 120 h p.i. Small intestine tissue sections and smears were examined for developmental stages. The jejunum contained the highest numbers of developmental stages. At 12 h p.i., sporozoites were observed inside a parasitophorous vacuole (PV) in the epithelial villi and the lamina propria. By 24 h, sporozoites enclosed by a PV were observed in enterocytes of the glands of Lieberkühn. At 48 h p.i., sporozoites, elongated immature and mature schizonts, were all seen in the glands with merozoites budding off from a residual body. By 60 h, second-generation, sausage-shaped schizonts containing up to 12 merozoites were observed around a residual body in the villar tip of invaded enterocytes. At 72 and 96 h, profuse schizogony associated with third- and fourth-generation schizonts was observed throughout the villus. At 120 h, another generation (fifth) of schizonts were seen in villar tips as well as in subepithelium where gamonts and oocysts were also present; a few gamonts were in epithelium. Our finding of maximum parasitization of E. maxima in jejunum is important because this region is critical for nutrient absorption and weight gain.


Zootaxa ◽  
2021 ◽  
Vol 5004 (3) ◽  
pp. 481-489
Author(s):  
HARUTAKA HATA ◽  
HIROYUKI MOTOMURA

The new anchovy Stolephorus grandis n. sp., described on the basis of 10 specimens collected from Papua, Indonesia, and Australia, closely resembles Stolephorus mercurius Hata, Lavoué & Motomura, 2021, Stolephorus multibranchus Wongratana, 1987, and Stolephorus rex Jordan & Seale, 1926, all having double pigmented lines on the dorsum from the occiput to the dorsal-fin origin, a long maxilla (posterior tip just reaching or slightly beyond the posterior margin of preopercle), and lacking a predorsal scute. However, the new species clearly differs from the others in having fewer gill rakers (35–39 total gill rakers on the first gill arch in S. grandis vs. > 38 in the other species), a greater number of vertebrae (total vertebrae 42–43 vs. fewer than 41), longer caudal peduncle (21.9–23.7% SL vs. < 20.8%), and the depressed pelvic fin not reaching posteriorly to vertical through the dorsal fin-origin (vs. reaching beyond level of dorsal-fin origin).


<em>ABSTRACT. Myxobolus cerebralis </em>possesses unique phenotypic and genotypic characteristics when compared with other histozoic parasites from the phylum Myxozoa. The parasite infects the cartilage and thereby induces a serious and potentially lethal disease in salmonid fish. Comparisons of the small subunit ribosomal DNA (ssu rDNA) sequences of <em>M. cerebralis </em>to other myxozoans demonstrate that the parasite has evolved separately from other <em>Myxobolus </em>spp. that may appear in cartilage or nervous tissues of the fish host. <em>Myxobolus cerebralis </em>has a complex life cycle involving two hosts and numerous developmental stages that may divide by mitosis, endogeny, or plasmotomy, and, at one stage, by meiosis. In the salmonid host, the parasite undergoes extensive migration from initial sites of attachment to the epidermis, through the nervous system, to reach cartilage, the site where sporogenesis occurs. During this migration, parasite numbers may increase by replication. Sporogenesis is initiated by autogamy, a process typical of pansporoblastic myxosporean development that involves the union of the one cell (pericyte) with another (sporogonic). Following this union, the sporogonic cell will give rise to all subsequent cells that differentiate into the lenticular shaped spore with a diameter of approximately 10 µm. This spore or myxospore is an environmentally resistant stage characterized by two hardened valves surrounding two polar capsules with coiled filaments and a binucleate sporoplasm cell. In the fish, these spores are found only in cartilage where they reside until released from fish that die or are consumed by other fish or fish-eating animals (e.g., birds). Spores reaching the aquatic sediments can be ingested and hatch in susceptible oligochaete hosts. The released sporoplasm invades and then resides between cells of the intestinal mucosa. In contrast to the parasite in the fish host, the parasite in the oligochaete undergoes the entire developmental cycle in this location. This developmental cycle involves merogony, gametogamy or the formation of haploid gametes, and sporogony. The actinosporean spores, formed at the culmination of this development, are released into the lumen of the intestine, prior to discharging into the aquatic environment. The mechanisms underlying the complex development of <em>M. cerebralis</em>, and its interactions with both hosts, are poorly understood. Recent advances, however, are providing insights into the factors that mediate certain phases of the infection. In this review, we consider known and recently obtained information on the taxonomy, development, and life cycle of the parasite.


Crustaceana ◽  
1997 ◽  
Vol 70 (8) ◽  
pp. 911-919 ◽  
Author(s):  
Kunihiko Izawa

AbstractThe copepodid stage of the parasitic copepod Peniculisa shiinoi Izawa, 1965 (Siphonostomatoida, Pennellidae), parasitic on the fins of a puffer fish, Canthigaster rivulatus, is described based on specimens reared from eggs. This is the only free-swimming larval stage of P. shiinoi. The copepodid is distinctly smaller than those of the known pennellids. However, the dispensability of the free-swimming nauplius stage is independent of the egg-size. The copepodid antennae of the pennellids are certainly uniramous. The setation of the rami of the copepodid legs varies among pennellids.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gilbert O. Silveira ◽  
Murilo S. Amaral ◽  
Helena S. Coelho ◽  
Lucas F. Maciel ◽  
Adriana S. A. Pereira ◽  
...  

AbstractReverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) is the most used, fast, and reproducible method to confirm large-scale gene expression data. The use of stable reference genes for the normalization of RT-qPCR assays is recognized worldwide. No systematic study for selecting appropriate reference genes for usage in RT-qPCR experiments comparing gene expression levels at different Schistosoma mansoni life-cycle stages has been performed. Most studies rely on genes commonly used in other organisms, such as actin, tubulin, and GAPDH. Therefore, the present study focused on identifying reference genes suitable for RT-qPCR assays across six S. mansoni developmental stages. The expression levels of 25 novel candidates that we selected based on the analysis of public RNA-Seq datasets, along with eight commonly used reference genes, were systematically tested by RT-qPCR across six developmental stages of S. mansoni (eggs, miracidia, cercariae, schistosomula, adult males and adult females). The stability of genes was evaluated with geNorm, NormFinder and RefFinder algorithms. The least stable candidate reference genes tested were actin, tubulin and GAPDH. The two most stable reference genes suitable for RT-qPCR normalization were Smp_101310 (Histone H4 transcription factor) and Smp_196510 (Ubiquitin recognition factor in ER-associated degradation protein 1). Performance of these two genes as normalizers was successfully evaluated with females maintained unpaired or paired to males in culture for 8 days, or with worm pairs exposed for 16 days to double-stranded RNAs to silence a protein-coding gene. This study provides reliable reference genes for RT-qPCR analysis using samples from six different S. mansoni life-cycle stages.


2020 ◽  
Vol 111 (1) ◽  
pp. 39-48
Author(s):  
Hanen Jendoubi ◽  
Ferran Garcia-Mari ◽  
Agatino Russo ◽  
Pompeo Suma

AbstractPest control is easier and more effective when pests are correctly identified. The Black Parlatoria Scale, Parlatoria ziziphi (Lucas, 1853) (Hemiptera: Coccomorpha: Diaspididae) is an important invasive pest in citrus-growing countries. This diaspidid has historically been difficult to control, because its immature stages are difficult to identify due to confusion with similar Parlatoria species. No field descriptions of female or male developmental stages are available for P. ziziphi. We provide the first description of field characteristics of the developmental stages of P. ziziphi. Colonies were reared in the laboratory on sour orange plants and lemon fruits to illustrate the distinctive features of each instar. An illustrated field guide of all life-cycle stages of male and female P. ziziphi is provided for correct species identification and better pest management. This tool is designed to help recognize P. ziziphi in field-scouting programmes or quarantine inspections, without the need for taxonomic expertise in identifying the Parlatoria group.


1961 ◽  
Vol 16 (2) ◽  
pp. 115-117 ◽  
Author(s):  
Aloysius Krieg

Electron-micrographs of whole virus-rods show a helix structure and confirm results published by K. M. SMITH. Basing on former observations of a hole in the centre of sub-units a new model of rodshaped insect-viruses is proposed. This model is similar to that of TMV. In view of the new observations on the structure and of the eclipse of these viruses, no confirmation for the hypothesis of a “life cycle” as suggested by BERGOLD and BIRD was obtained. Sub-units do not represent virus developmental stages but artifacts of alkaline degradation.


Sign in / Sign up

Export Citation Format

Share Document