Heat increment of feeding and partitioning of dietary energy in yearling Black Brant

1992 ◽  
Vol 70 (5) ◽  
pp. 1047-1051 ◽  
Author(s):  
James S. Sedinger ◽  
Robert G. White ◽  
William E. Hauer

We examined daily energy expenditure and energy balance by making simultaneous measurements of gaseous exchange and apparent metabolizable energy (AME) intake in four captive Black Brant (Branta bernicla nigricans) that ate alfalfa pellets. Daily energy expenditure was positively correlated with AME intake in all four individuals. The slope of this relationship represented an estimate of the heat increment of feeding, which averaged 0.20 for individuals in positive energy balance. Maintenance AME intake under experimental conditions was estimated at 451–646 kJ∙d−1∙kg−1. Individuals in positive energy balance retained AME at an efficiency of 81%, which is amongst the highest recorded for birds. Thirty-five percent of the apparent net energy for production was accounted for by protein deposition, but the ratio of protein to lipid produced increased from late winter through spring.

2001 ◽  
Vol 11 (s1) ◽  
pp. S208-S217 ◽  
Author(s):  
Raymond D. Starling

Aging is associated with a decline in daily energy expenditure that is disproportionately greater than the decline in daily energy intake. Collectively, these events can create a “positive” energy balance, secondary gains in central and total body fat, and a subsequently higher risk of morbidity and mortality. Participation in regular physical activity is a logical strategy to attenuate the decline in energy expenditure with aging, as physical activity can comprise between 10–50% of an older person’s daily energy expenditure. Understanding the influence of regular physical activity on energy expenditure with advancing age is clinically relevant, particularly since estimates predict that nearly 25% of the population will be ≥ 65 years of age by the year 2030. This brief review will focus on the current state of aging, energy expenditure, and physical activity literature. Topics to be addressed include: (a) measurement of physical activity in older adults; (b) aging and physical inactivity; and (c) influence of regular aerobic exercise on resting metabolic rate (RMR), thermic effect of food (TEF), and non-exercising physical activity.


2015 ◽  
Vol 75 (3) ◽  
pp. 319-327 ◽  
Author(s):  
David J. Clayton ◽  
Lewis J. James

The belief that breakfast is the most important meal of day has been derived from cross-sectional studies that have associated breakfast consumption with a lower BMI. This suggests that breakfast omission either leads to an increase in energy intake or a reduction in energy expenditure over the remainder of the day, resulting in a state of positive energy balance. However, observational studies do not imply causality. A number of intervention studies have been conducted, enabling more precise determination of breakfast manipulation on indices of energy balance. This review will examine the results from these studies in adults, attempting to identify causal links between breakfast and energy balance, as well as determining whether consumption of breakfast influences exercise performance. Despite the associations in the literature, intervention studies have generally found a reduction in total daily energy intake when breakfast is omitted from the daily meal pattern. Moreover, whilst consumption of breakfast supresses appetite during the morning, this effect appears to be transient as the first meal consumed after breakfast seems to offset appetite to a similar extent, independent of breakfast. Whether breakfast affects energy expenditure is less clear. Whilst breakfast does not seem to affect basal metabolism, breakfast omission may reduce free-living physical activity and endurance exercise performance throughout the day. In conclusion, the available research suggests breakfast omission may influence energy expenditure more strongly than energy intake. Longer term intervention studies are required to confirm this relationship, and determine the impact of these variables on weight management.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irene Cimino ◽  
Debra Rimmington ◽  
Y. C. Loraine Tung ◽  
Katherine Lawler ◽  
Pierre Larraufie ◽  
...  

AbstractNeuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat+/−p mice that carry a paternal null allele and do not express Nnat. Consistent with our previous studies, Nnat deficient mice on chow diet displayed a bimodal body weight phenotype with more than 30% of Nnat+/−p mice developing obesity. In response to both a 45% high fat diet and exposure to thermoneutrality (30 °C) Nnat deficient mice maintained the hypervariable body weight phenotype. Within a calorimetry system, food intake in Nnat+/−p mice was hypervariable, with some mice consuming more than twice the intake seen in wild type littermates. A hyperphagic response was also seen in Nnat+/−p mice in a second, non-home cage environment. An expected correlation between body weight and energy expenditure was seen, but corrections for the effects of positive energy balance and body weight greatly diminished the effect of neuronatin deficiency on energy expenditure. Male and female Nnat+/−p mice displayed subtle distinctions in the degree of variance body weight phenotype and food intake and further sexual dimorphism was reflected in different patterns of hypothalamic gene expression in Nnat+/−p mice. Loss of the imprinted gene Nnat is associated with a highly variable food intake, with the impact of this phenotype varying between genetically identical individuals.


1989 ◽  
Vol 67 (1) ◽  
pp. 14-18 ◽  
Author(s):  
C. H. Forbes-Ewan ◽  
B. L. Morrissey ◽  
G. C. Gregg ◽  
D. R. Waters

The doubly labeled water method was used to estimate the energy expended by four members of an Australian Army platoon (34 soldiers) engaged in training for jungle warfare. Each subject received an oral isotope dose sufficient to raise isotope levels by 200–250 (18O) and 100–120 ppm (2H). The experimental period was 7 days. Concurrently, a factorial estimate of the energy expenditure of the platoon was conducted. Also, a food intake-energy balance study was conducted for the platoon. Mean daily energy expenditure by the doubly labeled water method was 4,750 kcal (range 4,152–5,394 kcal). The factorial estimate of mean daily energy expenditure was 4,535 kcal. Because of inherent inaccuracies in the food intake-energy balance technique, we were able to conclude only that energy expenditure, as measured by this method, was greater than the estimated mean daily intake of 4,040 kcal. The doubly labeled water technique was well tolerated, is noninvasive, and appears to be suitable in a wide range of field applications.


1991 ◽  
Vol 69 (10) ◽  
pp. 2548-2555 ◽  
Author(s):  
Paul Stapp ◽  
Peter J. Pekins ◽  
William W. Mautz

The southern flying squirrel (Glaucomys volans) forms large aggregations inside nest-lined tree cavities to reduce exposure to winter temperatures. We measured oxygen consumption of individuals and grouped flying squirrels in Plexiglas and nest-box chambers in New Hampshire to determine savings provided by huddling and nest construction. Because G. volans breeds during late winter, we also measured energy expenditure of females during gestation and lactation. These data were used to construct daily energy budgets for flying squirrels during winter and to investigate the relationship between this species' cold tolerance and its current distribution. Flying squirrels had lower basal metabolism (0.95 cm3 O2∙g−1∙h−1) and rate of heat loss (0.11 cm3 O2∙g−1∙h−1∙ °C−1) than predicted according to mass. Peak reproductive costs (1 week postparturition) were 170% of nonbreeding requirements. At 9 °C, huddling in groups of three and six reduced energy expenditure by 27 and 36%, respectively. Compared with individuals without nests, nest insulation decreased heat loss by 37% for single squirrels and reduced lower critical temperature from 26.5 to 12.2 °C for groups of six. As estimated from our budget, aggregating reduces winter daily energy expenditure by 26–33%. At the northern range boundary, daily expenditure for squirrels using both aggregations and nests (2.5 times basal metabolism) and for females during peak lactation (3.9 times basal metabolism) was similar to estimates of maximal daily energy expenditure in the literature. We speculate that additional thermoregulatory costs and the decreased abundance of hard mast for winter caches prevent G. volans from occupying areas north of its current distribution.


1994 ◽  
Vol 76 (5) ◽  
pp. 1937-1945 ◽  
Author(s):  
T. J. Horton ◽  
H. J. Drougas ◽  
T. A. Sharp ◽  
L. R. Martinez ◽  
G. W. Reed ◽  
...  

Reports of low energy intakes in trained female athletes imply they have an increased energetic efficiency. To address this question, we determined how energy balance was achieved in endurance-trained females cyclists and lean controls (n=5 in each group). Daily energy expenditure was measured by using standardized physical activity protocols in a whole room calorimeter on two separate occasions: a cycling day and a noncycling day. Energy intake for weight maintenance was determined by a period of controlled feeding 5 days before and the day of each energy expenditure measurement. Energy balance was achieved in the cyclists on the cycling day while they consumed 2,900–3,000 kcal (their usual condition) and in controls on the noncycling day while they consumed 2,100–2,200 kcal (their usual condition). Total daily energy expenditure was not significantly different between the cyclists and controls on the noncycling day with both groups performing similar levels of activity. On the cycling day, daily energy expenditure was significantly greater in the cyclists vs. controls (P<0.03) as a result of their greater amount of cycling activity. Components of daily energy expenditure, i.e., resting metabolic rate and thermic effect of food and activity (noncycling), were not significantly different between groups. Overall, we found no significant increase in the energetic efficiency of endurance-trained female cyclists compared with controls.


PEDIATRICS ◽  
1995 ◽  
Vol 95 (1) ◽  
pp. 131-132
Author(s):  
Rudolph L. Leibel

Obesity, like baseball, is a game of inches. Weight gain cannot occur unless energy intake exceeds energy expenditure. Such positive energy balance is a sine qua non for normal growth in the child, and for obesity in the adult. Very small excesses of intake over expenditure can make a big difference if present over a long period of time. Consider the children in the study reported by Klesges et al1 elsewhere in this journal (pages 126-130). At about 4½ years of age, these children were estimated (by diet history) to have been ingesting about 2000 kcal per day. This is almost certainly an overestimate of the actual caloric intake of these children (see below).


2017 ◽  
Vol 49 (06) ◽  
pp. 472-479
Author(s):  
Tássia Borba ◽  
Lígia Galindo ◽  
Kelli Ferraz-Pereira ◽  
Raquel da Silva Aragão ◽  
Ana Toscano ◽  
...  

AbstractThe obesity epidemic has been the target of several studies to understand its etiology. The pathophysiological processes that take to obesity generally relate to the rupture of energy balance. This imbalance can result from environmental and/or endogenous events. Among the endogenous events, the hypothalamic-pituitary-adrenal axis, which promotes stress response via glucocorticoid activity, is considered a modulator of energy balance. However, it remains controversial whether the increase in plasma levels of glucocorticoids results in a positive or negative energy balance. Furthermore, there are no studies comparing different routes of administration of glucocorticoids in this context. Here, we investigated the effects of intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration of a specific agonist for glucocorticoid receptors on food intake and energy expenditure in rats. Sixty-day old rats were treated with i.p. or i.c.v. dexamethasone. Food intake and satiety were evaluated, as well as locomotor activity in order to determine energy expenditure. Both i.p. and i.c.v. dexamethasone increased food intake and decreased energy expenditure. Moreover, i.c.v. dexamethasone delayed the onset of satiety. Together, these results confirm that central glucocorticoid signaling promotes a positive energy balance and supports the role of the glucocorticoid system as the underlying cause of psychological stress-induced obesity.


1994 ◽  
Vol 77 (1) ◽  
pp. 366-372 ◽  
Author(s):  
M. I. Goran ◽  
J. Calles-Escandon ◽  
E. T. Poehlman ◽  
M. O'Connell ◽  
E. Danforth

This study was designed to examine effects of alterations in energy balance on adaptive changes in components of total energy expenditure (TEE). Nineteen young healthy males were studied during a 10-day sedentary energy balance baseline period and then randomly assigned to one of four 10-day treatment groups: 1) no change in energy intake (EI) or physical activity (PA; energy balance at low energy flux), 2) EI increased by 50% with no change in PA (positive energy balance), 3) TEE increased by 50% by increasing PA, matched by a 50% increase in EI (energy balance at high energy flux), and 4) TEE increased by 50% by increasing PA with no change in EI (negative energy balance). TEE was measured with doubly labeled water, resting metabolic rate (RMR) by indirect calorimetry, and thermic response to feeding (TEF) by indirect calorimetry; energy expenditure of physical activity (EEPA) was estimated by subtracting RMR, TEF, and prescribed PA from TEE. TEE was significantly increased by PA (by design) but not EI. There was a significant main effect of intake and a significant intake-by-activity interaction for changes in RMR. In post hoc analysis, RMR was significantly increased during positive energy balance and energy balance at high energy flux relative to change in RMR when energy balance was maintained at low energy flux. A significant increase in RMR was also noted during negative energy balance after adjustment for change in fat-free mass. There was no significant difference in change in RMR among the three treatment groups.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 8 (2) ◽  
pp. 143-159 ◽  
Author(s):  
Eric T. Poehlman ◽  
Christopher Melby

In this brief review we examine the effects of resistance training on energy expenditure. The components of daily energy expenditure are described, and methods of measuring daily energy expenditure are discussed. Cross-sectional and exercise intervention studies are examined with respect to their effects on resting metabolic rate, physical activity energy expenditure, postexercise oxygen consumption, and substrate oxidation in younger and older individuals. Evidence is presented to suggest that although resistance training may elevate resting metabolic rate, il does not substantially enhance daily energy expenditure in free-living individuals. Several studies indicate that intense resistance exercise increases postexercise oxygen consumption and shifts substrate oxidation toward a greater reliance on fat oxidation. Preliminary evidence suggests that although resistance training increases muscular strength and endurance, its effects on energy balance and regulation of body weight appear to be primarily mediated by its effects on body composition (e.g., increasing fat-free mass) rather than by the direct energy costs of the resistance exercise.


Sign in / Sign up

Export Citation Format

Share Document