scholarly journals Brane cosmology and the self-tuning of the cosmological constant in the presence of bulk black holes

2020 ◽  
Vol 80 (7) ◽  
Author(s):  
P. Betzios ◽  
O. Papadoulaki

Abstract Motivated by the holographic self-tuning proposal of the cosmological constant, we generalize and study the cosmology of brane-worlds embedded in a higher-dimensional bulk black hole geometry. We describe the equations and matching conditions in the case of flat, spherical and hyperbolic slicing of the bulk geometry and find the conditions for the existence of a static solution. We solve the equations that govern dynamical geometries in the probe brane limit and we describe in detail the resulting brane-world cosmologies. Of particular interest are the properties of solutions when the brane-world approaches the black hole horizon. In this case the geometry induced on the brane is that of de Sitter, whose entropy and temperature is related to those of the higher dimensional bulk black hole.

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Ivano Basile ◽  
Stefano Lanza

Abstract We study de Sitter configurations in ten-dimensional string models where supersymmetry is either absent or broken at the string scale. To this end, we derive expressions for the cosmological constant in general warped flux compactifications with localized sources, which yield no-go theorems that extend previous works on supersymmetric cases. We frame our results within a dimensional reduction and connect them to a number of Swampland conjectures, corroborating them further in the absence of supersymmetry. Furthermore, we construct a top-down string embedding of de Sitter brane-world cosmologies within unstable anti-de Sitter landscapes, providing a concrete realization of a recently revisited proposal.


2006 ◽  
Vol 15 (02) ◽  
pp. 171-188 ◽  
Author(s):  
GAUTAM SENGUPTA

A black string generalization of the Myers–Perry N-dimensional rotating black hole is considered in an (N + 1)-dimensional Randall–Sundrum brane world. The black string intercepts the (N - 1) brane in a N-dimensional rotating black hole. We examine the diverse cases arising for various non-zero rotation components and obtain the geodesic equations for these space–times. The causal structure and asymptotics of the resulting brane world geometries are analyzed.


2001 ◽  
Vol 16 (supp01a) ◽  
pp. 77-91 ◽  
Author(s):  
M. J. DUFF

After reviewing how M-theory subsumes string theory, I report broadly on some new and interesting developments, focusing on the "brane world": circumventing no-go theorems for supersymmetric brane-worlds, complementarity of the Maldacena and Randall-Sundrum pictures; self-tuning of the cosmological constant. I conclude with the top ten unsolved problems.


2007 ◽  
Vol 22 (04) ◽  
pp. 289-296
Author(s):  
METİN ARIK ◽  
DİLEK ÇİFTCİ

We construct a static solution for (4 + 1)-dimensional bulk such that the (3 + 1)-dimensional world has a linear warp factor and describes the Schwarzschild–dS4 black hole. For m = 0 this four-dimensional universe and Friedmann–Robertson–Walker universe are related with an explicit coordinate transformation. We emphasize that for linear warp factors the effect of bulk on the brane world shows up as the dS4 background which is favored by the big bang cosmology.


2014 ◽  
Vol 11 (05) ◽  
pp. 1450047 ◽  
Author(s):  
A. Belhaj ◽  
M. Chabab ◽  
H. El Moumni ◽  
M. B. Sedra ◽  
A. Segui

Inspired from the inflation brane world cosmology, we study the thermodynamics of a black hole solution in two-dimensional dilaton gravity with an arctangent potential background. We first derive the two-dimensional black hole geometry, then we examine its asymptotic behaviors. More precisely, we find that such behaviors exhibit properties appearing in some known cases including the anti-de Sitter and the Schwarzschild black holes. Using the complex path method, we compute the Hawking radiation. The entropy function can be related to the value of the potential at the horizon.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mehrdad Mirbabayi

Abstract We propose a Euclidean preparation of an asymptotically AdS2 spacetime that contains an inflating dS2 bubble. The setup can be embedded in a four dimensional theory with a Minkowski vacuum and a false vacuum. AdS2 approximates the near horizon geometry of a two-sided near-extremal Reissner-Nordström black hole, and the two sides can connect to the same Minkowski asymptotics to form a topologically nontrivial worm- hole geometry. Likewise, in the false vacuum the near-horizon geometry of near-extremal black holes is approximately dS2 times 2-sphere. We interpret the Euclidean solution as describing the decay of an excitation inside the wormhole to a false vacuum bubble. The result is an inflating region inside a non-traversable asymptotically Minkowski wormhole.


2019 ◽  
Vol 2019 (10) ◽  
pp. 007-007 ◽  
Author(s):  
A. Amariti ◽  
C. Charmousis ◽  
D. Forcella ◽  
E. Kiritsis ◽  
F. Nitti

Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 210
Author(s):  
Ismael Ayuso ◽  
Diego Sáez-Chillón Gómez

Extremal cosmological black holes are analysed in the framework of the most general second order scalar-tensor theory, the so-called Horndeski gravity. Such extremal black holes are a particular case of Schwarzschild-De Sitter black holes that arises when the black hole horizon and the cosmological one coincide. Such metric is induced by a particular value of the effective cosmological constant and is known as Nariai spacetime. The existence of this type of solutions is studied when considering the Horndeski Lagrangian and its stability is analysed, where the so-called anti-evaporation regime is studied. Contrary to other frameworks, the radius of the horizon remains stable for some cases of the Horndeski Lagrangian when considering perturbations at linear order.


2020 ◽  
Vol 29 (05) ◽  
pp. 2050032
Author(s):  
Shuang Yu ◽  
Changjun Gao

We construct exact black hole solutions to Einstein gravity with nonlinear electrodynamic field. In these solutions, there are, in general, four parameters. They are physical mass, electric charge, cosmological constant and the coupling constant. These solutions differ significantly from the Reissner–Nordström–de Sitter solution in Einstein–Maxwell gravity with a cosmological constant, due to the presence of coupling constant. For example, some of them are endowed with a topological defect on angle [Formula: see text] and the electric charge of some can be much larger or smaller than their mass by varying the coupling constant. On the other hand, these spacetimes are all asymptotically de Sitter (or anti-de Sitter). As a result, their causal structure is similar to the Reissner–Nordström–de Sitter spacetime. Finally, the investigations on the thermodynamics reveal that the coupling constant except for solution-4 has the opposite effect as temperature on the phase, structure of black holes. Concretely, the phase-space changes from single phase to three phases with the decrease of temperature. On the contrary, it changes from three phases to a single phase with the decrease of coupling constant.


Sign in / Sign up

Export Citation Format

Share Document