ASSESSMENT OF FEATURE SELECTION AND CLASSIFICATION APPROACHES TO ENHANCE INFORMATION FROM OVERNIGHT OXIMETRY IN THE CONTEXT OF APNEA DIAGNOSIS

2013 ◽  
Vol 23 (05) ◽  
pp. 1350020 ◽  
Author(s):  
DANIEL ÁLVAREZ ◽  
ROBERTO HORNERO ◽  
J. VÍCTOR MARCOS ◽  
NIELS WESSEL ◽  
THOMAS PENZEL ◽  
...  

This study is aimed at assessing the usefulness of different feature selection and classification methodologies in the context of sleep apnea hypopnea syndrome (SAHS) detection. Feature extraction, selection and classification stages were applied to analyze blood oxygen saturation (SaO2) recordings in order to simplify polysomnography (PSG), the gold standard diagnostic methodology for SAHS. Statistical, spectral and nonlinear measures were computed to compose the initial feature set. Principal component analysis (PCA), forward stepwise feature selection (FSFS) and genetic algorithms (GAs) were applied to select feature subsets. Fisher's linear discriminant (FLD), logistic regression (LR) and support vector machines (SVMs) were applied in the classification stage. Optimum classification algorithms from each combination of these feature selection and classification approaches were prospectively validated on datasets from two independent sleep units. FSFS + LR achieved the highest diagnostic performance using a small feature subset (4 features), reaching 83.2% accuracy in the validation set and 88.7% accuracy in the test set. Similarly, GAs + SVM also achieved high generalization capability using a small number of input features (7 features), with 84.2% accuracy on the validation set and 84.5% accuracy in the test set. Our results suggest that reduced subsets of complementary features (25% to 50% of total features) and classifiers with high generalization ability could provide high-performance screening tools in the context of SAHS.

2020 ◽  
Vol 16 (8) ◽  
pp. 1088-1105
Author(s):  
Nafiseh Vahedi ◽  
Majid Mohammadhosseini ◽  
Mehdi Nekoei

Background: The poly(ADP-ribose) polymerases (PARP) is a nuclear enzyme superfamily present in eukaryotes. Methods: In the present report, some efficient linear and non-linear methods including multiple linear regression (MLR), support vector machine (SVM) and artificial neural networks (ANN) were successfully used to develop and establish quantitative structure-activity relationship (QSAR) models capable of predicting pEC50 values of tetrahydropyridopyridazinone derivatives as effective PARP inhibitors. Principal component analysis (PCA) was used to a rational division of the whole data set and selection of the training and test sets. A genetic algorithm (GA) variable selection method was employed to select the optimal subset of descriptors that have the most significant contributions to the overall inhibitory activity from the large pool of calculated descriptors. Results: The accuracy and predictability of the proposed models were further confirmed using crossvalidation, validation through an external test set and Y-randomization (chance correlations) approaches. Moreover, an exhaustive statistical comparison was performed on the outputs of the proposed models. The results revealed that non-linear modeling approaches, including SVM and ANN could provide much more prediction capabilities. Conclusion: Among the constructed models and in terms of root mean square error of predictions (RMSEP), cross-validation coefficients (Q2 LOO and Q2 LGO), as well as R2 and F-statistical value for the training set, the predictive power of the GA-SVM approach was better. However, compared with MLR and SVM, the statistical parameters for the test set were more proper using the GA-ANN model.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4523 ◽  
Author(s):  
Carlos Cabo ◽  
Celestino Ordóñez ◽  
Fernando Sáchez-Lasheras ◽  
Javier Roca-Pardiñas ◽  
and Javier de Cos-Juez

We analyze the utility of multiscale supervised classification algorithms for object detection and extraction from laser scanning or photogrammetric point clouds. Only the geometric information (the point coordinates) was considered, thus making the method independent of the systems used to collect the data. A maximum of five features (input variables) was used, four of them related to the eigenvalues obtained from a principal component analysis (PCA). PCA was carried out at six scales, defined by the diameter of a sphere around each observation. Four multiclass supervised classification models were tested (linear discriminant analysis, logistic regression, support vector machines, and random forest) in two different scenarios, urban and forest, formed by artificial and natural objects, respectively. The results obtained were accurate (overall accuracy over 80% for the urban dataset, and over 93% for the forest dataset), in the range of the best results found in the literature, regardless of the classification method. For both datasets, the random forest algorithm provided the best solution/results when discrimination capacity, computing time, and the ability to estimate the relative importance of each variable are considered together.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2936 ◽  
Author(s):  
Xianghao Zhan ◽  
Xiaoqing Guan ◽  
Rumeng Wu ◽  
Zhan Wang ◽  
You Wang ◽  
...  

As alternative herbal medicine gains soar in popularity around the world, it is necessary to apply a fast and convenient means for classifying and evaluating herbal medicines. In this work, an electronic nose system with seven classification algorithms is used to discriminate between 12 categories of herbal medicines. The results show that these herbal medicines can be successfully classified, with support vector machine (SVM) and linear discriminant analysis (LDA) outperforming other algorithms in terms of accuracy. When principal component analysis (PCA) is used to lower the number of dimensions, the time cost for classification can be reduced while the data is visualized. Afterwards, conformal predictions based on 1NN (1-Nearest Neighbor) and 3NN (3-Nearest Neighbor) (CP-1NN and CP-3NN) are introduced. CP-1NN and CP-3NN provide additional, yet significant and reliable, information by giving the confidence and credibility associated with each prediction without sacrificing of accuracy. This research provides insight into the construction of a herbal medicine flavor library and gives methods and reference for future works.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255307
Author(s):  
Fujun Wang ◽  
Xing Wang

Feature selection is an important task in big data analysis and information retrieval processing. It reduces the number of features by removing noise, extraneous data. In this paper, one feature subset selection algorithm based on damping oscillation theory and support vector machine classifier is proposed. This algorithm is called the Maximum Kendall coefficient Maximum Euclidean Distance Improved Gray Wolf Optimization algorithm (MKMDIGWO). In MKMDIGWO, first, a filter model based on Kendall coefficient and Euclidean distance is proposed, which is used to measure the correlation and redundancy of the candidate feature subset. Second, the wrapper model is an improved grey wolf optimization algorithm, in which its position update formula has been improved in order to achieve optimal results. Third, the filter model and the wrapper model are dynamically adjusted by the damping oscillation theory to achieve the effect of finding an optimal feature subset. Therefore, MKMDIGWO achieves both the efficiency of the filter model and the high precision of the wrapper model. Experimental results on five UCI public data sets and two microarray data sets have demonstrated the higher classification accuracy of the MKMDIGWO algorithm than that of other four state-of-the-art algorithms. The maximum ACC value of the MKMDIGWO algorithm is at least 0.5% higher than other algorithms on 10 data sets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao-Ping Huang ◽  
Lei Lei ◽  
Shun-Xin Lei ◽  
Wei-Wei Zhu ◽  
Jun Yan

AbstractSiraitia grosvenorii (LHG) is widely used as a medicinal and edible material around the world. The objective of this study was to develop an effective method for the authentication of the geographical origin of LHG in its main producing area Guangxi, China, which is identified as Chinese Protected Designation of Origin product, against other producing regions in China. The content of 14 elements (K, Na, Ca, P, Mg, Al, B, Ba, Cu, Fe, Mn, Ni, Zn, and Sr) of 114 LHG samples was determined by inductively coupled plasma optical emission spectrometry. Multivariate analysis was then performed to classify the geographical origin of LHG samples. The contents of multielement display an obvious trend of clustering according to the geographical origin of LHG samples based on radar plot and principal component analysis. Finally, three supervised statistical techniques, including linear discriminant analysis (LDA), k-nearest neighbours (k-NN), and support vector machine (SVM), were applied to develop classification models. Finally, 40 unknown LHG samples were used to evaluate the predictive ability of model and discrimination rate of 100%, 97.5% and 100% were obtained for LDA, k-NN, and SVM, respectively. This study indicated that it is feasible to attribute unknown LHG samples to its geographical origin based on its multielement content coupled with chemometric techniques.


Author(s):  
ShuRui Li ◽  
Jing Jin ◽  
Ian Daly ◽  
Chang Liu ◽  
Andrzej Cichocki

Abstract Brain–computer interface (BCI) systems decode electroencephalogram signals to establish a channel for direct interaction between the human brain and the external world without the need for muscle or nerve control. The P300 speller, one of the most widely used BCI applications, presents a selection of characters to the user and performs character recognition by identifying P300 event-related potentials from the EEG. Such P300-based BCI systems can reach good levels of accuracy but are difficult to use in day-to-day life due to redundancy and noisy signal. A room for improvement should be considered. We propose a novel hybrid feature selection method for the P300-based BCI system to address the problem of feature redundancy, which combines the Menger curvature and linear discriminant analysis. First, selected strategies are applied separately to a given dataset to estimate the gain for application to each feature. Then, each generated value set is ranked in descending order and judged by a predefined criterion to be suitable in classification models. The intersection of the two approaches is then evaluated to identify an optimal feature subset. The proposed method is evaluated using three public datasets, i.e., BCI Competition III dataset II, BNCI Horizon dataset, and EPFL dataset. Experimental results indicate that compared with other typical feature selection and classification methods, our proposed method has better or comparable performance. Additionally, our proposed method can achieve the best classification accuracy after all epochs in three datasets. In summary, our proposed method provides a new way to enhance the performance of the P300-based BCI speller.


Author(s):  
Sanjay Kumar Sonbhadra ◽  
Sonali Agarwal ◽  
P. Nagabhushan

Existing dimensionality reduction (DR) techniques such as principal component analysis (PCA) and its variants are not suitable for target class mining due to the negligence of unique statistical properties of class-of-interest (CoI) samples. Conventionally, these approaches utilize higher or lower eigenvalued principal components (PCs) for data transformation; but the higher eigenvalued PCs may split the target class, whereas lower eigenvalued PCs do not contribute significant information and wrong selection of PCs leads to performance degradation. Considering these facts, the present research offers a novel target class-guided feature extraction method. In this approach, initially, the eigendecomposition is performed on variance–covariance matrix of only the target class samples, where the higher- and lower-valued eigenvectors are rejected via statistical analysis, and the selected eigenvectors are utilized to extract the most promising feature subspace. The extracted feature-subset gives a more tighter description of the CoI with enhanced associativity among target class samples and ensures the strong separation from nontarget class samples. One-class support vector machine (OCSVM) is evaluated to validate the performance of learned features. To obtain optimized values of hyperparameters of OCSVM a novel [Formula: see text]-ary search-based autonomous method is also proposed. Exhaustive experiments with a wide variety of datasets are performed in feature-space (original and reduced) and eigenspace (obtained from original and reduced features) to validate the performance of the proposed approach in terms of accuracy, precision, specificity and sensitivity.


2020 ◽  
Vol 9 (9) ◽  
pp. 507
Author(s):  
Sanjiwana Arjasakusuma ◽  
Sandiaga Swahyu Kusuma ◽  
Stuart Phinn

Machine learning has been employed for various mapping and modeling tasks using input variables from different sources of remote sensing data. For feature selection involving high- spatial and spectral dimensionality data, various methods have been developed and incorporated into the machine learning framework to ensure an efficient and optimal computational process. This research aims to assess the accuracy of various feature selection and machine learning methods for estimating forest height using AISA (airborne imaging spectrometer for applications) hyperspectral bands (479 bands) and airborne light detection and ranging (lidar) height metrics (36 metrics), alone and combined. Feature selection and dimensionality reduction using Boruta (BO), principal component analysis (PCA), simulated annealing (SA), and genetic algorithm (GA) in combination with machine learning algorithms such as multivariate adaptive regression spline (MARS), extra trees (ET), support vector regression (SVR) with radial basis function, and extreme gradient boosting (XGB) with trees (XGbtree and XGBdart) and linear (XGBlin) classifiers were evaluated. The results demonstrated that the combinations of BO-XGBdart and BO-SVR delivered the best model performance for estimating tropical forest height by combining lidar and hyperspectral data, with R2 = 0.53 and RMSE = 1.7 m (18.4% of nRMSE and 0.046 m of bias) for BO-XGBdart and R2 = 0.51 and RMSE = 1.8 m (15.8% of nRMSE and −0.244 m of bias) for BO-SVR. Our study also demonstrated the effectiveness of BO for variables selection; it could reduce 95% of the data to select the 29 most important variables from the initial 516 variables from lidar metrics and hyperspectral data.


Author(s):  
Alok Kumar Shukla ◽  
Pradeep Singh ◽  
Manu Vardhan

The explosion of the high-dimensional dataset in the scientific repository has been encouraging interdisciplinary research on data mining, pattern recognition and bioinformatics. The fundamental problem of the individual Feature Selection (FS) method is extracting informative features for classification model and to seek for the malignant disease at low computational cost. In addition, existing FS approaches overlook the fact that for a given cardinality, there can be several subsets with similar information. This paper introduces a novel hybrid FS algorithm, called Filter-Wrapper Feature Selection (FWFS) for a classification problem and also addresses the limitations of existing methods. In the proposed model, the front-end filter ranking method as Conditional Mutual Information Maximization (CMIM) selects the high ranked feature subset while the succeeding method as Binary Genetic Algorithm (BGA) accelerates the search in identifying the significant feature subsets. One of the merits of the proposed method is that, unlike an exhaustive method, it speeds up the FS procedure without lancing of classification accuracy on reduced dataset when a learning model is applied to the selected subsets of features. The efficacy of the proposed (FWFS) method is examined by Naive Bayes (NB) classifier which works as a fitness function. The effectiveness of the selected feature subset is evaluated using numerous classifiers on five biological datasets and five UCI datasets of a varied dimensionality and number of instances. The experimental results emphasize that the proposed method provides additional support to the significant reduction of the features and outperforms the existing methods. For microarray data-sets, we found the lowest classification accuracy is 61.24% on SRBCT dataset and highest accuracy is 99.32% on Diffuse large B-cell lymphoma (DLBCL). In UCI datasets, the lowest classification accuracy is 40.04% on the Lymphography using k-nearest neighbor (k-NN) and highest classification accuracy is 99.05% on the ionosphere using support vector machine (SVM).


Sign in / Sign up

Export Citation Format

Share Document