PROPENSITY FOR MINERALIZATION IN VOLCANOES — EVIDENCE FROM MELT INCLUSIONS

2012 ◽  
Vol 22 (01n02) ◽  
pp. 157-164
Author(s):  
AGNES G. REYES ◽  
WILLIAM J. TROMPETTER ◽  
IAN J. GRAHAM

Rocks and melt inclusions (MI) from 11 volcanic centers of the Kermadec-Tofua arc, in the South West Pacific, were petrographically studied prior to chemical analysis under the ion beam. The abundance of MI with daughter minerals are volcano-specific with the most abundant found in "U", Putoto, and Hinepuia volcanoes where >50% of MI contain daughter minerals. The B , Li , Cl and S contents in MI generally increase with the silica content of the rock. Fe , Ni , Mn , Cu and Zn are common in MI of all rock types but Mo , Hg and Cu have the highest concentrations in dacite-rhyodacites. The highest concentrations of B , Ti , V , Fe , Co and Mo occur in plagioclase MI; S , Ni , Ge and Hg in pyroxene MI; Cl and Li in quartz MI; and Cu , Zn and M in hornblende MI. Different ore-forming components in volcanic rocks can be correlated with rock composition, Cl/S and B/S of the melts, the presence and abundance of mineral sinks for various elements and the occurrence of hydrothermally altered rock at depth and on the seafloor.

2007 ◽  
Vol 50 (5) ◽  
pp. 851-860 ◽  
Author(s):  
Maria Sélia Blonski ◽  
Carlos Roberto Appoloni ◽  
Paulo Sérgio Parreira ◽  
Pedro Henrique Arruda Aragão ◽  
Virgilio Franco Nascimento Filho

Energy Dispersion X-Ray Fluorescence Technique (EDXRF) was employed to study the effects of the fumagina disease on the elementary chemical composition of the leaves. The experimental set up consisted of a Mo X-ray tube (Ksub<FONT FACE=Symbol>µ</FONT> = 17.44 keV) with Zr filter and a Si (Li) detector. The measurements were performed with the infected and healthy leaves of citric plants. The elements Ti, Mn, Fe, Cu and Zn were quantified, with an average DL of 69, 12, 8, 4 and 4 µg.g-1 respectively. The obtained concentration for Fe varied from 44 to 192 µg.g-1 in healthy leaves and from 363 to 704 µg.g-1 in infected leaves with fumagina .


1985 ◽  
Vol 22 (6) ◽  
pp. 881-892 ◽  
Author(s):  
John D. Greenough ◽  
S. R. McCutcheon ◽  
V. S. Papezik

Lower to Middle Cambrian volcanic rocks occur within the Avalon Zone of southern New Brunswick at Beaver Harbour and in the Long Reach area. The Beaver Harbour rocks are intensely altered, but the major- and trace-element geochemistry indicates that they could be highly evolved (basaltic andesites) within-plate basalts. The mafic flows from the Long Reach area form two chemically and petrologically distinct groups: (1) basalts with feldspar phenocrysts that represent evolved continental tholeiites with some oceanic characteristics; and (2) a group of aphyric basalts showing extremely primitive continental tholeiite compositions, also with oceanic affinities and resembling some rift-related Jurassic basalts on the eastern seaboard. Felsic pyroclastic rocks in the Long Reach area make the suite bimodal. This distribution of rock types supports conclusions from the mafic rocks that the area experienced tension throughout the Early to Middle Cambrian.


2018 ◽  
Vol 37 (2) ◽  
pp. 607-625 ◽  
Author(s):  
Haitao Sun ◽  
Dakang Zhong ◽  
Weijia Zhan

To explain the strong spatial heterogeneity of volcanic reservoirs porosity in the Songliao Basin and provide new ideas for predicting good volcanic reservoirs in other similar basins, the relationship between the pore evolution process and lithology of volcanic reservoirs has been described in this article. With the description and interpretation of core, thin section, scanning electron microscope, and the results of mercury injection experiment, this article clarifies the lithology, pore types, and pore structure features of the volcanic reservoirs in the Songliao Basin. The rocks of volcanic reservoirs in study area contain pyroclastic rock and volcanic lavas. The most common lithologies are rhyolite, volcanic breccia, and volcanic tuff. The pore size, morphology, and structure vary greatly between these three lithologies, the reason of which we think is the different volcanic eruption process as well as rock composition and its structure. The digenetic evolution of rhyolite includes gas dissipation of magmatic condensation; vesicles fulfilling by hydrothermal fluid; kaolinization and sericitization of feldspar phenocrysts; carbonation, devitrification, and recrystallization of felsic matrix; and finally, the dissolution of feldspar phenocrysts and felsic matrix. As for volcanic breccia, it usually go through the compaction, quartz and calcite filling the original pores between volcanic breccias, and dissolution of mineral debris together with tuff matrix. Similar with the rhyolite, volcanic tuff also undergoes the carbonation and kaolinization of felsic matrix, the dissolution of feldspar and felsic matrix, and compaction. Due to these comprehensive processes, a comprehensive analysis of volcanic rock lithology, which can indicate lithology distribution vertically and horizontally, is very necessary during volcanic reservoirs evaluation and prediction. These detailed analyses will help explorers to find potential reservoirs by distinguishing the diagenetic evolution and pore characteristic of volcanic reservoirs.


1965 ◽  
Vol 70 (6) ◽  
pp. 1509-1513 ◽  
Author(s):  
J. L. Powell ◽  
G. Faure ◽  
P. M. Hurley

1981 ◽  
Vol 106 ◽  
pp. 69-75
Author(s):  
I Parsons

A series of smal! volcanic centres cut Ordovician turbidites of Formation A in the southem part of Johannes V. Jensen Land between Midtkap and Frigg Fjord (Map 2). Their general location and main rock types were described by Soper et al. (1980) and their nomenclature is adopted here for fig. 22 with the addition of the small pipe B2. A further small intrusion, south-west of Frigg Fjord, was described by Pedersen (1980). The centres lie 5-10 km south of, and parallel to, the important Harder Fjord fault zone (fig. 22) which traverses the southern part of the North Greenland fold belt and shows substantial downthrow to the south (Higgins et al., this report).


Author(s):  
A.I. Malinovsky ◽  
◽  
V.V. Golozubov ◽  

This paper studies the original results of the material composition analysis of the Early Silurian terrigenous deposits of the Kordonka formation of the Paleozoic – Early Mesozoic Laoeling-Grodekovo terrane of the South Primorye. The research is aimed at reconstructing paleogeodynamic setting of the deposition of sediments of the formation, and determining the type and mother rock composition of the feed sources based on the complex genetic interpretation of the material composition of rocks. It was established that mineralogically and geochemically formation of the rocks correspond to the typical graywackes and represent petrogenic or “first cycle” rocks formed mainly through the source rock failure. They are characterized by a low maturity, low lithodynamic recycling rate of mother rocks and their rapid burial. The interpretation of the results of the complex study of the material composition of the rocks was carried out on the basis of its comparison with the compositions of ancient rocks and modern sediments formed in the well-known geodynamic settings. The obtained data indicate that deposits of the Kordonka formation accumulated in a sedimentary basin connected with an oceanic island arc. Being built by basic and intermediate volcanic rocks as well as by igneous and sedimentary rocks that constituted its base, this island arc was the source area that supplied clastic material to the aforementioned sedimentary basin.


2007 ◽  
Vol 13 ◽  
pp. 45-48 ◽  
Author(s):  
Mark T. Hutchison ◽  
Louise Josefine Nielsen ◽  
Stefan Bernstein

Exploration for diamonds in West Greenland has experienced a major boost within the last decade following the establishment of world-class diamond mines within the nearby Slave Province of the Canadian Arctic. Numerous companies have active programmes of diamond exploration and increasingly larger diamonds have been discovered, notably a 2.392 carat dodecahedral stone recovered by the Canadian exploration company Hudson Resources Inc. in January 2007. The Geological Survey of Denmark and Greenland (GEUS) is currently carrying out several studies aimed at understanding the petrogenesis of diamondiferous kimberlites in Greenland and the physical and chemical properties of their associated mantle source regions (e.g. Hutchison 2005; Nielsen & Jensen 2005). Constraint of the mantle geotherm, i.e. the variation of temperature with depth for a particular mantle volume, is an important initial step in assessing the likelihood of such a volume to grow diamonds and hence the diamond potential of associated deep-sourced magmatic rocks occurring at surface. Cool geotherms are often present within old cratonic blocks such as West Greenland (Garde et al. 2000) and provide a good environment for the formation of diamonds (Haggerty 1986). This study aims to constrain the mantle geotherm for the southern extent of the North Atlantic Craton in Greenland by applying three-phase geothermobarometry calculations using chemical compositions of clinopyroxene, orthopyroxene and garnet from four-phase kimberlite-hosted lherzolite xenoliths. Xenoliths have been sampled from kimberlites from two areas in South-West Greenland: Midternæs and Pyramide- fjeld (Fig. 1). Kimberlites in the Pyramidefjeld area principally occur as sheeted sills hosted in the Pyramidefjeld granite complex of Palaeoproterozoic Ketilidian age. In contrast, Midternæs kimberlites occur as outcrops within a single, extensive and undulating sill hosted within pre-Ketilidian granodioritic gneiss and Ketilidian supracrustal rocks. Pyramidefjeld kimberlites have been shown to be Mesozoic (Andrews & Emeleus 1971), and work is currently being carried out to further constrain the ages of these and the Midternæs kimberlites and also xenoliths using modern methods. No attempt is made herein to provide a correct petrological classification of the rocks hosting the xenoliths; however, the abundance of clinopyroxene reported by Andrews & Emeleus (1971) suggests that further work may more correctly conclude a classification as ‘orangeite’ after Mitchell (1995). Notwithstanding this, the term ‘kimberlite’ is employed throughout in order to be consistent with that adopted by previous authors. The Precambrian Pyramide fjeld granite complex and adjacent Archaean granod ioritic gneisses are host to several kimberlite sheets located at various levels between 400 and 900 m elevation (Fig. 1A; Andrews & Emeleus 1971, 1975). Kimberlites are mainly found as loose blocks in scree; however, these are almost always sourced locally from in situ bodies. Sheets can often be found deep within overhanging clefts, particularly in granitic walls. The kimberlite bodies are gently dipping, typically 20 degrees, and with a range of strikes. The maximum thickness of sills is approximately 2 m but thickness varies significantly over short distances. In many instances, the occurrence of kimberlite is seen to be controlled locally by structures in the country rocks. Field observations of the range of orientations of intrusive bodies do not appear to suggest a particular focal point which could be a likely location for an intrusive centre such as a pipe. This observation is in line with what is seen throughout West Greenland where kimberlite emplacement appears as dykes and sills (Larsen & Rex 1992) rather than the pipes and blows which are common in other world-wide settings. The occurrence of xenoliths amongst Pyramidefjeld kimberlites is highly variable with the most xenolith-rich localities being in the vicinity of Safirsø (Fig. 1A). The majority of xenoliths are dunites with occasional wehrlites and lherzolites (Emeleus & Andrews 1975). Of particular interest from the point of view of thermobarometry is the occurrence of garnet. This is rarely found, even in clinopyroxene-bearing samples, and the two samples chosen for thermobarometry (Fig. 1A) represent the majority of the garnet-bearing xenoliths identified within an estimated total population of 75 xenoliths collected. The Midternæs kimberlites are hosted in Archaean gneisses and Proterozoic supracrustal rocks (Fig. 1B; Andrews & Emeleus 1971, 1975). The style of kimberlite emplacement and occurrence of garnet-bearing xenoliths are closely similar to those of Pyramidefjeld. Contours of elevation between outcrops suggest that the kimberlites form parts of a largely contiguous single body dipping at approximately 30 degrees to the west-south-west. Individual outcrops as in Pyramidefjeld indicate that the body varies in thickness and undulates in response to local structure. The south-western portion of the body which outcrops near the glacier Sioralik Bræ, is considerably thicker than elsewhere (Fig. 2) and in some places is seen to have a true thickness in excess of 4 m. Xenoliths are less abundant on average than in Pyramidefjeld kimberlites, but a similar variety and proportion of rock types and infrequent occurrence of garnet is observed. The kimberlites from both areas were intruded along zones of platy jointing which likely were caused by degassing of the magma and formed just prior to the kimberlite intrusion. In contrast to some kimberlites in other cratons, very few xenoliths of local, lower crustal rock types have been recognised in the kimberlites from Pyramidefjeld and Mid ternæs. The intrusions are therefore believed to have been of a non-explosive nature, perhaps because of host-rock rheol - ogy or due to emplacement at relatively deep crustal levels. Here we report on calculations of equilibrium pressure and temperature using compositions of three-phase assemblages of garnet, orthopyroxene and clinopyroxene from Midternæs and Pyramidefjeld mantle xenoliths.


2006 ◽  
Vol 11 ◽  
pp. 145-162 ◽  
Author(s):  
Kai Sørensen ◽  
John A. Korstgård ◽  
William E. Glassley ◽  
Bo Møller Stensgaard

The Nordre Strømfjord shear zone in the fjord Arfersiorfik, central West Greenland, consists of alternating panels of supracrustal rocks and orthogneisses which together form a vertical zone up to 7 km wide with sinistral transcurrent, ductile deformation, which occurred under middle amphibolite facies conditions. The pelitic and metavolcanic schists and paragneisses are all highly deformed, while the orthogneisses appear more variably deformed, with increasing deformation evident towards the supracrustal units. The c. 1.92 Ga Arfersiorfik quartz diorite is traceable for a distance of at least 35 km from the Inland Ice towards the west-south-west. Towards its northern contact with an intensely deformed schist unit it shows a similar pattern of increasing strain, which is accompanied by chemical and mineralogical changes. The metasomatic changes associated with the shear zone deformation are superimposed on a wide range of original chemical compositions, which reflect magmatic olivine and/ or pyroxene as well as hornblende fractionation trends. The chemistry of the Arfersiorfik quartz diorite suite as a whole is comparable to that of Phanerozoic plutonic and volcanic rocks of calc-alkaline affinity.


2007 ◽  
Vol 13 ◽  
pp. 41-44 ◽  
Author(s):  
Christian Knudsen ◽  
Jeroen A.M. Van Gool ◽  
Claus Østergaard ◽  
Julie A. Hollis ◽  
Matilde Rink-Jørgensen ◽  
...  

A gold prospect on central Storø in the Nuuk region of southern West Greenland is hosted by a sequence of intensely deformed, amphibolite facies supracrustal rocks of late Mesoto Neoarchaean age. The prospect is at present being explored by the Greenlandic mining company NunaMinerals A/S. Amphibolites likely to be derived from basaltic volcanic rocks dominate, and ultrabasic to intermediate rocks are also interpreted to be derived from volcanic rocks. The sequence also contains metasedimentary rocks including quartzites and cordierite-, sillimanite-, garnet- and biotite-bearing aluminous gneisses. The metasediments contain detrital zircon from different sources indicating a maximum age of the mineralisation of c. 2.8 Ga. The original deposition of the various rock types is believed to have taken place in a back-arc setting. Gold is mainly hosted in garnet- and biotite-rich zones in amphibolites often associated with quartz veins. Gold has been found within garnets indicating that the mineralisation is pre-metamorphic, which points to a minimum age of the mineralisation of c. 2.6 Ga. The geochemistry of the goldbearing zones indicates that the initial gold mineralisation is tied to fluid-induced sericitisation of a basic volcanic protolith. The hosting rocks and the mineralisation are affected by several generations of folding.


Sign in / Sign up

Export Citation Format

Share Document