Effects of Al2O3–Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime

2015 ◽  
Vol 26 (04) ◽  
pp. 1550047 ◽  
Author(s):  
Behrouz Takabi ◽  
Hossein Shokouhmand

In this paper, forced convection of a turbulent flow of pure water, Al 2 O 3/water nanofluid and Al 2 O 3– Cu /water hybrid nanofluid (a new advanced nanofluid composited of Cu and Al 2 O 3 nanoparticles) through a uniform heated circular tube is numerically analyzed. This paper examines the effects of these three fluids as the working fluids, a wide range of Reynolds number (10 000 ≤ Re ≤ 10 0000) and also the volume concentration (0% ≤ ϕ ≤ 2%) on heat transfer and hydrodynamic performance. The finite volume discretization method is employed to solve the set of the governing equations. The results indicate that employing hybrid nanofluid improves the heat transfer rate with respect to pure water and nanofluid, yet it reveals an adverse effect on friction factor and appears severely outweighed by pressure drop penalty. However, the average increase of the average Nusselt number (when compared to pure water) in Al 2 O 3– Cu /water hybrid nanofluid is 32.07% and the amount for the average increase of friction factor would be 13.76%.

2016 ◽  
Vol 14 (2) ◽  
pp. 169 ◽  
Author(s):  
Suresh Chandrasekhar ◽  
Vaarin Majumdar Sharma

The paper presents convection heat transfer of a turbulent flow Al2O3/water nanofluid in a circular duct. The duct is a under constant and uniform heat flux. The paper computationally investigates the system’s thermal behavior in a wide range of Reynolds number and also volume concentration up to 6%. To obtain the nanofluid thermophysical properties, the Hamilton-Crosser model along with the Brownian motion effect are utilized. Then the thermal performance of the system with the nanofluid is compared to the conventional systems which use water as the working fluid. The results indicate that the use of nanofluid of 6% improves the heat transfer rate up to 36.8% with respect to pure water. Therefore, using the Al2O3/water nanofluid instead of water can be a great choice when better heat transfer is needed.


Author(s):  
M. R. Salem ◽  
R. K. Ali ◽  
R. Y. Sakr ◽  
K. M. Elshazly

This study presents an experimental investigation of the characteristics of convective heat transfer in horizontal shell and coil heat exchangers in addition to the friction factor for fully developed flow through their helically coiled tube (HCT). Five heat exchangers of counterflow configuration were constructed with different HCT-curvature ratios (δ) and tested at different mass flow rates and inlet temperatures of γ-Al2O3/water nanofluid in the HCT. The tests were performed for γ-Al2O3 with average size of 40 nm and particles volume concentration (ϕ) from 0% to 2% for 0.0392≤δ≤0.1194. Totally, 750 test runs were performed from which the HCT-average Nusselt number (Nu¯t) and fanning friction factor (fc) were calculated. Results illustrated that Nu¯t and fc of nanofluids are higher than those of the pure water at same flow condition, and this increase goes up with the increase in ϕ. When ϕ increases from 0% to 2%, the average increase in Nu¯t is of 59.4–81% at lower and higher HCT-Reynolds number, respectively, and the average increase in fc is of 25.7% and 27.4% at lower and higher HCT-Reynolds number, respectively, when ϕ increases from 0% to 2% for δ=0.1194. In addition, results showed that Nu¯t and fc increase by increasing coil curvature ratio. When δ increases from 0.0392 to 0.1194 for ϕ=2%, the average increase in Nu¯t is of 130.2% and 87.2% at lower and higher HCT-Reynolds number, respectively, and a significant increase of 18.2–7.5% is obtained in the HCT-fanning friction factor at lower and higher HCT-Reynolds number, respectively. Correlations for Nu¯t and fc as a function of the investigated parameters are obtained.


Author(s):  
R Avinash Kumar ◽  
M Kavitha ◽  
P Manoj Kumar ◽  
S Arvindh Seshadri

The objective of this paper is to numerically study the heat transfer and hydrodynamic performance of a graphene-based hybrid nanofluid flowing through a microchannel for electronics cooling applications. Different concentrations of Graphene-Platinum/water hybrid nanofluid were employed as coolants. The thermophysical properties used in this study were considered to be temperature-dependent. The microchannel was modeled as a porous media. The effect of nanoparticle volume concentration on thermal resistance, pressure drop, friction factor and ratio of heat transfer coefficient to pressure drop (Figure of merit) was analyzed and the plots were generated for different Reynolds numbers of the working fluid. The results pointed out that introduction of nanoparticles resulted in the lowering of thermal resistance. However, the pressure drop and friction factor increased. Figure of merit is found to be higher for higher concentrations of hybrid nanofluids compared to base fluid water. On analyzing the results, it was understood that the utilization of Graphene-Platinum/water hybrid nanofluid through microchannels can be highly effective in the laminar region. It also suggests that this graphene based nanofluid has excellent potential as a coolant to remove excess heat from miniature electronic devices.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Ing Jiat Kendrick Wong ◽  
Ngieng Tze Angnes Tiong

AbstractThis paper presents the numerical study of thermal performance factor of Al2O3-Cu/water hybrid nanofluid in circular and non-circular ducts (square and rectangular). Turbulent regime is studied with the Reynolds number ranges from 10000 to 100000. The heat transfer performance and flow behaviour of hybrid nanofluid are investigated, considering the nanofluid volume concentration between 0.1 and 2%. The thermal performance factor of hybrid nanofluid is evaluated in terms of performance evaluation criteria (PEC). This present numerical results are successfully validated with the data from the literature. The results indicate that the heat transfer coefficient and Nusselt number of Al2O3-Cu/water hybrid nanofluid are higher than those of Al2O3/water nanofluid and pure water. However, this heat transfer enhancement is achieved at the expense of an increased pressure drop. The heat transfer coefficient of 2% hybrid nanofluid is approximately 58.6% larger than the value of pure water at the Reynolds number of 10000. For the same concentration and Reynolds number, the pressure drop of hybrid nanofluid is 4.79 times higher than the pressure drop of water. The heat transfer performance is the best in the circular pipe compared to the non-circular ducts, but its pressure drop increment is also the largest. The hybrid nanofluid helps to improve the problem of low heat transfer characteristic in the non-circular ducts. In overall, the hybrid nanofluid flow in circular and non-circular ducts are reported to possess better thermal performance factor than that of water. The maximum attainable PEC is obtained by 2% hybrid nanofluid in the square duct at the Reynolds Number of 60000. This study can help to determine which geometry is efficient for the heat transfer application of hybrid nanofluid.


2018 ◽  
Vol 916 ◽  
pp. 221-225
Author(s):  
Ji Zu Lv ◽  
Liang Yu Li ◽  
Cheng Zhi Hu ◽  
Min Li Bai ◽  
Sheng Nan Chang ◽  
...  

Nanofluids is an innovative study of nanotechnology applied to the traditional field of thermal engineering. It refers to the metal or non-metallic nanopowder was dispersed into water, alcohol, oil and other traditional heat transfer medium, to prepared as a new heat transfer medium with high thermal conductivity. The role of nanofluids in strengthening heat transfer has been confirmed by a large number of experimental studies. Its heat transfer mechanism is mainly divided into two aspects. On the one hand, the addition of nanoparticles enhances the thermal conductivity. On the other hand, due to the interaction between the nanoparticles and base fluid causing the changes in the flow characteristics, which is also the main factor affecting the heat transfer of nanofluids. Therefore, a intensive study on the flow characteristics of nanofluids will make the study of heat transfer more meaningful. In this experiment, the flow characteristics of SiO2-water nanofluids in two-dimensional backward step flow are quantitatively studied by PIV. The results show that under the same Reynolds number, the turbulence of nanofluids is larger than that of pure water. With the increase of nanofluids volume fraction, the flow characteristics are constantly changing. The quantitative analysis proved that the nanofluids disturbance was enhanced compared with the base liquid, which resulting in the heat transfer enhancement.


2014 ◽  
Vol 6 ◽  
pp. 147059 ◽  
Author(s):  
Behrouz Takabi ◽  
Saeed Salehi

This paper numerically examines laminar natural convection in a sinusoidal corrugated enclosure with a discrete heat source on the bottom wall, filled by pure water, Al2O3/water nanofluid, and Al2O3-Cu/water hybrid nanofluid which is a new advanced nanofluid with two kinds of nanoparticle materials. The effects of Rayleigh number (103≤Ra≤106) and water, nanofluid, and hybrid nanofluid (in volume concentration of 0% ≤ ϕ ≤ 2%) as the working fluid on temperature fields and heat transfer performance of the enclosure are investigated. The finite volume discretization method is employed to solve the set of governing equations. The results indicate that for all Rayleigh numbers been studied, employing hybrid nanofluid improves the heat transfer rate compared to nanofluid and water, which results in a better cooling performance of the enclosure and lower temperature of the heated surface. The rate of this enhancement is considerably more at higher values of Ra and volume concentrations. Furthermore, by applying the modeling results, two correlations are developed to estimate the average Nusselt number. The results reveal that the modeling data are in very good agreement with the predicted data. The maximum error for nanofluid and hybrid nanofluid was around 11% and 12%, respectively.


Author(s):  
Yan Wang ◽  
Xiang Ling

The heat transfer performance of fluid flowing in a microchannel was experimentally studied, to meet the requirement of extremely high heat flux removal of microelectronic devices. There were 10 parallel microchannels with rectangular cross-section in the stainless steel plate, which was covered by a glass plate to observe the fluid flowing behavior, and another heating plate made of aluminum alloy was positioned behind the microchannel. Single phase heat transfer and fluid flow downstream the microchannel experiments were conducted with both deionized water and ethanol. Besides experiments, numerical models were also set up to make a comparison with experimental results. It is found that the pressure drop increases rapidly with enlarging Reynolds number (200), especially for ethanol. With comparison, the flow resistance of pure water is smaller than ethanol. Results also show that the friction factor decreases with Reynolds number smaller than the critical value, while increases the velocity, the friction factor would like to keep little changed. We also find that the water friction factors obtained by CFD simulations in parallel microchannels are much larger than experiment results. With heat flux added to the fluid, the heat transfer performance can be enhanced with larger Re number and the temperature rise could be weaken. Compared against ethanol, water performed much better for heat removal. However, with intensive heat flux, both water and ethanol couldn’t meet the requirement and the temperature at outlet would increase remarkably, extremely for ethanol. These findings would be helpful for thermal management design and optimization.


2019 ◽  
Vol 14 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Makoto Shimomura ◽  
Raditya Putra ◽  
Niken Angga Rukmini ◽  
Sulistiyani ◽  
◽  
...  

A pyroclastic flow is one of the most dangerous hazardous phenomena. To escape a pyroclastic flow, the influenceable area must be evacuated before the flow occurs. Therefore, to predict the inundation area of a pyroclastic flow is important, and numerical simulation is a helpful tool in this prediction. This study simulated a pyroclastic flow by reproducing the pyroclastic flow of Mt. Merapi that occurred in 2010. However, necessary detailed information of the flow to conduct the simulation, such as total volume and the property of the pyroclastic flow material, flow rate, etc., were not available. Therefore, 20 simulations were conducted, varying the important conditions, such as the volume of pyroclastic material, inter-granular friction factor, and duration of the flow. The results showed that the volume of the pyroclastic material and inter-granular friction factor strongly control the flow characteristics. However, the friction factor does not result in a wide range of values; therefore, volume is the most influencing factor. The most suitable condition is a total volume of pyroclastic material of 30 × 106m3, a 5 min duration of flow, and a 0.6 friction factor.


Author(s):  
Akhilesh V. Bapat ◽  
Satish G. Kandlikar

The continuum assumption has been widely accepted for single phase liquid flows in microchannels. There are however a number of publications which indicate considerable deviation in thermal and hydrodynamic performance during laminar flow in microchannels. In the present work, experiments have been performed on six parallel microchannels with varying cross-sectional dimensions. A careful assessment of friction factor and heat transfer in is carried out by properly accounting for flow area variations and the accompanying non-uniform flow distribution in individual channels. These factors seem to be responsible for the discrepancy in predicting friction factor and heat transfer using conventional theory.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Jnana Ranjan Senapati ◽  
Sukanta Kumar Dash ◽  
Subhransu Roy

Entropy generation due to natural convection has been calculated for a wide range of Rayleigh number (Ra) in both laminar (104 ≤ Ra ≤ 108) and turbulent (1010 ≤ Ra ≤ 1012) flow regimes, for diameter ratio of 2 ≤ D/d ≤ 5, for an isothermal vertical cylinder fitted with annular fins. In the laminar regime, the entropy generation was predominantly caused by heat transfer (conduction and convection) and the viscous contribution was negligible with respect to heat transfer. But in the turbulent regime, entropy generation due to fluid friction is significant enough although heat transfer entropy generation is still dominant. The results demonstrate that the degree of irreversibility is higher in case of finned configuration when compared with unfinned one. With the deployment of a merit function combining the first and second laws of thermodynamics, we have tried to delineate the thermodynamic performance of finned cylinder with natural convection. So, we have defined the ratio (I/Q)finned/(I/Q)unfinned. The ratio (I/Q)finned/(I/Q)unfinned gets its minimum value at optimum fin spacing where maximum heat transfer occurs in turbulent flow, whereas in laminar flow the ratio (I/Q)finned/(I/Q)unfinned decreases continuously with the increase in number of fins.


Sign in / Sign up

Export Citation Format

Share Document