Modulation of Chelidonii herba on GABA Activated Choride Current in Rat PAG Neurons

2001 ◽  
Vol 29 (02) ◽  
pp. 265-279 ◽  
Author(s):  
Yonjung Kim ◽  
Minchul Shin ◽  
Jooho Chung ◽  
Eehwa Kim ◽  
Gyosung Koo ◽  
...  

Modulation of Chelidonii herba on γ-aminobutyric acid (GABA) activated chloride current in the acutely dissociated periaqueductal gray (PAG) neuron was studied by nystatin-perforated patch-clamp technique. High concentrations of Chelidonii herba elicited ion current, that was blocked by bicuculline. Low concentrations reduced the GABA activated current in PAG. Two types of inhibitory action of Chelidonii herba on GABA activated current have been implicated in PAG. One is the inhibitory action of Chelidonii herbe on GABA was abolished by naltrexone and the other is that of Chelidonii herba was potentiated by naltrexone. In addition, all of two types of action of Chelidonii herba are linked to pertussis toxin-sensitive GTP-binding proteins. These results suggest that the inhibitory modulation of Chelidonii herba on GABA activated current via G-proteins in PAG neuron is an important analgesic mechanism.

2013 ◽  
Vol 24 (4) ◽  
pp. 521-534 ◽  
Author(s):  
Travis I. Moore ◽  
Hiromasa Tanaka ◽  
Hyung Joon Kim ◽  
Noo Li Jeon ◽  
Tau-Mu Yi

Yeast cells polarize by projecting up mating pheromone gradients, a classic cell polarity behavior. However, these chemical gradients may shift direction. We examine how yeast cells sense and respond to a 180o switch in the direction of microfluidically generated pheromone gradients. We identify two behaviors: at low concentrations of α-factor, the initial projection grows by bending, whereas at high concentrations, cells form a second projection toward the new source. Mutations that increase heterotrimeric G-protein activity expand the bending-growth morphology to high concentrations; mutations that increase Cdc42 activity result in second projections at low concentrations. Gradient-sensing projection bending requires interaction between Gβγ and Cdc24, whereas gradient-nonsensing projection extension is stimulated by Bem1 and hyperactivated Cdc42. Of interest, a mutation in Gα affects both bending and extension. Finally, we find a genetic perturbation that exhibits both behaviors. Overexpression of the formin Bni1, a component of the polarisome, makes both bending-growth projections and second projections at low and high α-factor concentrations, suggesting a role for Bni1 downstream of the heterotrimeric G-protein and Cdc42 during gradient sensing and response. Thus we demonstrate that G-proteins modulate in a ligand-dependent manner two fundamental cell-polarity behaviors in response to gradient directional change.


2015 ◽  
Vol 9 (5) ◽  
pp. 25-30 ◽  
Author(s):  
Peyman Rajaei ◽  
Neda Mohamadi

Plants have a wonderful variety of secondary metabolites which may be change due to environmental factors and stress conditions. Considering the importance of Echium amoenum in Iranian traditional medicine, this study aimed to investigate the effect of abiotic stresses on the possibility of further production of secondary metabolites in the plant. In general, according our research findings, beta-aminobutyric acid increased growth indexes. Effect of BABA on secondary metabolites was different. BABA increased plant flavonoids but reduced the tannins. Numerous studies have pointed to the stress effects of this material at high concentrations but the concentrations used in this study increased the plant growth. Nickel in applied concentrations had no significant reduction in plant dry weight but increased the photosynthetic pigments. Ni increased plant flavonoids but reduced the tannins. Nickel and beta-aminobutyric acid at low concentrations, is recommended to use for greater production of secondary metabolites in Echium cultivation.DOI: http://dx.doi.org/10.3126/ijls.v9i5.12687


1973 ◽  
Vol 51 (10) ◽  
pp. 2004-2006 ◽  
Author(s):  
D. R. Jones

The inhibitory action of three systemic fungicides (Benlate, Hoe 6053, and Milstem) on the growth of axenic cultures of the carnation rust fungus, Uromyces dianthi, was assessed. The rust- and smut-specific fungicide (Hoe 6053) was found to inhibit growth when present in the agar medium in very low concentrations, while moderate concentrations of the wide range fungicide (Benlate), and high concentrations of the powdery mildew-specific fungicide (Milstem) were needed for inhibition. The results indicated the possible use of U. dianthi in future in vitro fungicide screening programs and mode-of-action studies.


1998 ◽  
Vol 274 (2) ◽  
pp. H571-H579 ◽  
Author(s):  
K. Y. Bogdanov ◽  
H. A. Spurgeon ◽  
T. M. Vinogradova ◽  
E. G. Lakatta

With the whole cell patch-clamp technique, we studied the effects of the n-3 and n-6 polyunsaturated fatty acids (PUFAs), linoleic (C18:2n-6), eicosapentaenoic (C20:4n-3), docosahexaenoic (C22:5n-3), and arachidonic (AA; C20:4n-6) acids, on K+ currents in rat ventricular myocytes. At low concentrations (5–10 μM) all PUFAs except AA inhibited, by ∼40%, the transient outward current ( I to) without affecting other K+ currents and markedly prolonged the action potential (AP). AA inhibited I to but also augmented a sustained depolarization-induced outward K+ current ( I sus); the latter effect did not occur in the presence of 4-aminopyridine or with eicosatetraynoic acid, a nonmetabolizable analog of AA. Higher concentrations of PUFAs (20–50 μM) further inhibited I to and also inhibited I sus. Thus, at high concentrations, PUFAs have a nonspecific effect on several K+ channels; at low concentrations, PUFAs preferentially inhibit I to and prolong the AP.


1985 ◽  
Vol 63 (11) ◽  
pp. 1465-1470 ◽  
Author(s):  
A. W. Barolet ◽  
A. Li ◽  
S. Liske ◽  
M. E. Morris

The effects of picrotoxin and bicuculline methiodide to block depolarizing responses of extrasynaptic receptors for γ-aminobutyric acid (GABA) are compared using excitability testing of myelinated axons in amphibian peripheral nerve. The actions of the antagonists appear both complex and dissimilar. Picrotoxin (10–1000 μM) produces large reversible depressions of the maximal response to GABA (0.01–10 mM) and increases the EC50 from 0.33 to 12.6 mM. With high concentrations of agonist and antagonist an insensitive component is apparent. The action of picrotoxin is not classically noncompetitive: it may represent a mixed antagonism (competitive and noncompetitive) or a noncompetitive one, masked by the presence of receptor reserve and (or) secondary depolarizing influences (e.g., GABA-evoked [K+]o accumulation). Bicuculline methiodide (10–200 μM) shifts the GABA concentration–response curve to the right; maximal responses persist and are even enhanced. The impression that bicuculline methiodide has a competitive action is supported by analysis of its inhibition of responses to low concentrations of the agonist. It is suggested that the enhancement of GABA responses by bicuculline methiodide and their apparent resistance to block by picrotoxin may be due to a common secondary effect of the antagonists such as a decrease in membrane conductance to K+ and (or) block of transmitter uptake.


1992 ◽  
Vol 68 (05) ◽  
pp. 570-576 ◽  
Author(s):  
Mary A Selak

SummaryWe have previously demonstrated that human neutrophil cathepsin G is a strong platelet agonist that binds to a specific receptor. This work describes the effect of neutrophil elastase on cathepsin G-induced platelet responses. While platelets were not activated by high concentrations of neutrophil elastase by itself, elastase enhanced aggregation, secretion and calcium mobilization induced by low concentrations of cathepsin G. Platelet aggregation and secretion were potentiated in a concentration-dependent manner by neutrophil elastase with maximal responses observable at 200 nM. Enhancement was observed when elastase was preincubated with platelets for time intervals of 10–60 s prior to addition of a low concentration of cathepsin G and required catalytically-active elastase since phenylmethanesulphonyl fluoride-inhibited enzyme failed to potentiate cell activation. Neutrophil elastase potentiation of platelet responses induced by low concentrations of cathepsin G was markedly inhibited by creatine phosphate/creatine phosphokinase and/or indomethacin, indicating that the synergism between elastase and cathepsin G required the participation of ADP and thromboxane A2. On the other hand, platelet responses were not attenuated by the PAF antagonist BN 52021, signifying that PAF-acether did not play a role in elastase potentiation. At higher concentrations porcine pancreatic elastase exhibits similar effects to neutrophil elastase, demonstrating that the effect of elastase was not unique to the neutrophil protease. While neutrophil elastase failed to alter the ability of cathepsin G to hydrolyze a synthetic chromogenic substrate, preincubation of platelets with elastase increased the apparent affinity of cathepsin G binding to platelets. In contrast to their effect on cathepsin G-induced platelet responses, neither neutrophil nor pancreatic elasatse potentiated aggregation or dense granule release initiated by ADP, PAF-acether, arachidonic acid or U46619, a thromboxane A2 mimetic. Moreover, unlike its effect on cathepsin G, neutrophil elastase inhibited thrombin-induced responses. The current observations demonstrate that elastase can potentiate platelet responses mediated by low concentrations of cathepsin G, suggesting that both enzymes may function synergistically to activate platelets under conditions where neutrophil degranulation occurs.


1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


1970 ◽  
Vol 23 (03) ◽  
pp. 601-620 ◽  
Author(s):  
Th. B Tschopp

SummaryAggregation of cat platelets in the citrated plasma is examined by means of Born’s absorptiometer. A marked tendency of the platelets of this species to spontaneous aggregation necessitated first of all the development of an improved technique of blood collection.A hypothesis according to which 5-HT is released from the platelets, explains the absence of oscillations on the base line of the absorptiometer, the absence of platelet swelling, when ADP is added, and the effect of stirring on the aggregation curves in cat PRP. The average volume of cat platelets amounts to 10.46 μ3 when directly fixed in the blood, when fixed from PRP to 12.17 μ3, when fixed from stirred PRP to 13.51 μ3.In low concentrations (0.3-2 μM) ADP produce reversible aggregation; in narrowly restricted, individually dissimilar mean concentrations irreversible aggregation in two phases and in high concentrations, irreversible aggregation in one phase. Like ADP serotonin produces 2 phase irreversible aggregation in concentrations of 3-10 μM, but unlike ADP, the aggregation velocity decreases again with high 5-HT concentrations (>100 μM). Adrenaline does not produce aggregation and it is likely that adenosine and adenosine monophosphate inhibit the aggregation by serotonin but not by ADP. Species differences in the aggregation of human, rabbit and cat platelets are discussed.


1971 ◽  
Vol 26 (01) ◽  
pp. 145-166
Author(s):  
E Deutsch ◽  
K Lechner ◽  
K Moser ◽  
L Stockinger

Summary1. The aniline derivative AN 162, Donau Pharmazie, Linz, Austria, has a dual action on the blood coagulation: an anticoagulant and an coagulation enhancing effect.2. The anticoagulant action may only be demonstrated with high concentrations (over 1 X 10”3 M related to plasma) preferentially in PPP. It is partially caused by an inhibition of the endogenous way of generation of the prothrombin converting principle. In addition it is suggested that it interferes with the fibrinogen-fibrin reaction in a manner not yet understood.3. The coagulant action is caused by a greater availability of platelet constituents at low concentrations of AN 162 (over 1 × 10-4 M) and by the induction of a release reaction at higher concentrations. The platelet factors 3 and 4, serotonin, adenine, and acid phosphatase are released.4. AN 162 inhibits platelet aggregation. This inhibition can be demonstrated by the PAT of Breddin and in the stirred aggregation test of Born. It is more effective to inhibit the collagen-induced and the second phase of the adrenaline-induced aggregation than the ADP induced one. The platelet retention (test of Hellem) is also reduced.5. The action of AN 162 on the platelets is caused by a damage of the platelet membrane which becomes permeabel for both, soluble platelet constitutents and granula.6. AN 162 interferes with the energy metabolism of the platelets. It causes a loss of ATP, and inhibits the key-enzymes of glycolysis, citric acid cycle, fatty acid oxydation and glutathione reduction.7. AN 162 inhibits the growth of fibroblasts without influence on mitosis.


1986 ◽  
Vol 55 (01) ◽  
pp. 136-142 ◽  
Author(s):  
K J Kao ◽  
David M Shaut ◽  
Paul A Klein

SummaryThrombospondin (TSP) is a major platelet secretory glycoprotein. Earlier studies of various investigators demonstrated that TSP is the endogenous platelet lectin and is responsible for the hemagglutinating activity expressed on formaldehyde-fixed thrombin-treated platelets. The direct effect of highly purified TSP on thrombin-induced platelet aggregation was studied. It was observed that aggregation of gel-filtered platelets induced by low concentrations of thrombin (≤0.05 U/ml) was progressively inhibited by increasing concentrations of exogenous TSP (≥60 μg/ml). However, inhibition of platelet aggregation by TSP was not observed when higher than 0.1 U/ml thrombin was used to activate platelets. To exclude the possibility that TSP inhibits platelet aggregation by affecting thrombin activation of platelets, three different approaches were utilized. First, by using a chromogenic substrate assay it was shown that TSP does not inhibit the proteolytic activity of thrombin. Second, thromboxane B2 synthesis by thrombin-stimulated platelets was not affected by exogenous TSP. Finally, electron microscopy of thrombin-induced platelet aggregates showed that platelets were activated by thrombin regardless of the presence or absence of exogenous TSP. The results indicate that high concentrations of exogenous TSP (≥60 μg/ml) directly interfere with interplatelet recognition among thrombin-activated platelets. This inhibitory effect of TSP can be neutralized by anti-TSP Fab. In addition, anti-TSP Fab directly inhibits platelet aggregation induced by a low (0.02 U/ml) but not by a high (0.1 U/ml) concentration of thrombin. In conclusion, our findings demonstrate that TSP is functionally important for platelet aggregation induced by low (≤0.05 U/ml) but not high (≥0.1 U/ml) concentrations of thrombin. High concentrations of exogenous TSP may univalently saturate all its platelet binding sites consequently interfering with TSP-crosslinking of thrombin-activated platelets.


Sign in / Sign up

Export Citation Format

Share Document