The Radioprotective Effects of Bu-Zhong-Yi-Qi-Tang: A Prescription of Traditional Chinese Medicine

2002 ◽  
Vol 30 (01) ◽  
pp. 127-137 ◽  
Author(s):  
Sung-Ho Kim ◽  
Song-Eun Lee ◽  
Heon Oh ◽  
Se-Ra Kim ◽  
Sung-Tae Yee ◽  
...  

We evaluated the effect of Bu-Zhong-Yi-Qi-Tang, a prescription of traditional Oriental medicine, and its major ingredients on protection of the intestine and hematopoietic organs against radiation damage in this study. The jejunal crypt survival, endogenous spleen colony formation, and apoptosis in jejunal crypt cells were investigated in mice irradiated with high and low doses of γ-rays. Bu-Zhong-Yi-Qi-Tang administration before irradiation protected the jejunal crypts (p < 0.0001), increased the formation of the endogenous spleen colony (p < 0.05) and reduced the frequency of radiation-induced apoptosis (p < 0.05). In experiments on the effects of the individual ingredient of Bu-Zhong-Yi-Qi-Tang, Rensan (Radix Ginseng), Danggui (Radix Angelicae gigantis), Shengma (Rhizoma Cimicifugae) and Chaihu (Radix Bupleuri) might have major radioprotective effects, and each might have different degrees of effect on these three endpoints. These results indicated that Bu-Zhong-Yi-Qi-Tang might be a better agent than any one of its ingredients to satisfy all three endpoints. Although the mechanisms of this inhibitory effect remain to be elucidated, these results indicated that Bu-Zhong-Yi-Qi-Tang might be a useful radioprotector, especially since it is a relatively non-toxic natural product. Further studies are needed to better characterize the protective nature of Bu-Zhong-Yi-Qi-Tang extract and its ingredients.

1999 ◽  
Vol 27 (03n04) ◽  
pp. 387-396 ◽  
Author(s):  
Song-Eun Lee ◽  
Heon Oh ◽  
Jung-Ah Yang ◽  
Sung-Kee Jo ◽  
Myung-Woo Byun ◽  
...  

We performed this study to determine the effect of Si-Wu-Tang, a basic prescription of traditional Oriental medicine as a blood-building decoction (Chinese medical concept: Bu-Xie), Si-Jun-Zi-Tang, a basic prescription as an energy tonic (Chinese medical concept: Bu-Qi) and its major ingredients on jejunal crypt survival, endogenous spleen colony formation, and apoptosis in jejunal crypt cells of mice irradiated with high and low dose of γ-irradiation. Si-Wu-Tang administration before irradiation protected the jejunal crypts (p < 0.0005), increased the formation of endogenous spleen colonies (p < 0.05) and reduced the frequency of radiation-induced apoptosis (p < 0.05). In an experiment on the effect of ingredients of Si-Wu-Tang, the result indicated that extract of Danggui and Baishaoyao might have a major radioprotective effect. The radioprotective effect of Si-Jun-Zi-Tang and its ingredients were not as significant as that of Si-Wu-Tang. Although the mechanisms of this inhibitory effect remain to be elucidated, these results indicate that Si-Wu-Tang might be a useful radioprotector, especially since it is a relatively nontoxic natural product. Further studies are needed to characterize better the protective nature of Si-Wu-Tang extract and its ingredients.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 974-985 ◽  
Author(s):  
R. Keaney Rathbun ◽  
Gregory R. Faulkner ◽  
Marika H. Ostroski ◽  
Tracy A. Christianson ◽  
Grant Hughes ◽  
...  

Abstract Hematopoietic progenitor cells (HPC) from mice nullizygous at the Fanconi anemia (FA) group C locus (FAC −/−) are hypersensitive to the mitotic inhibitory effects of interferon (IFN-γ). We tested the hypothesis that HPC from the bone marrow of Fanconi group C children are similarly hypersensitive and that the fas pathway is involved in affecting programmed cell death in response to low doses of IFN-γ. In normal human and murine HPC, IFN-γ primed the fas pathway and induced both fas and interferon response factor-1 (IRF-1) gene expression. These IFN-γ-induced apoptotic responses in HPC from the marrow of a child with FA of the C group (FA-C) and in FAC −/− mice occurred at significantly lower IFN doses (by an order of magnitude) than did the apoptotic responses of normal HPC. Treatment of FA-C CD34+ cells with low doses of recombinant IFN-γ, inhibited growth of colony forming unit granulocyte-macrophage and burst-forming unit erythroid, while treatment with blocking antibodies to fas augmented clonal growth and abrogated the clonal inhibitory effect of IFN-γ. Transfer of the normal FAC gene into FA-C B-cell lines prevented mitomycin C–induced apoptosis, but did not suppress fas expression or inhibit the primed fas pathway. However, the kinetics of Stat1-phosphate decay in IFN-γ–treated cells was prolonged in mutant cells and was normalized by transduction of the normal FAC gene. Therefore, the normal FAC protein serves, in part, to modulate IFN-γ signals. HPC bearing inactivating mutations of FAC fail to normally modulate IFN-γ signals and, as a result, undergo apoptosis executed through the fas pathway.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 974-985 ◽  
Author(s):  
R. Keaney Rathbun ◽  
Gregory R. Faulkner ◽  
Marika H. Ostroski ◽  
Tracy A. Christianson ◽  
Grant Hughes ◽  
...  

Hematopoietic progenitor cells (HPC) from mice nullizygous at the Fanconi anemia (FA) group C locus (FAC −/−) are hypersensitive to the mitotic inhibitory effects of interferon (IFN-γ). We tested the hypothesis that HPC from the bone marrow of Fanconi group C children are similarly hypersensitive and that the fas pathway is involved in affecting programmed cell death in response to low doses of IFN-γ. In normal human and murine HPC, IFN-γ primed the fas pathway and induced both fas and interferon response factor-1 (IRF-1) gene expression. These IFN-γ-induced apoptotic responses in HPC from the marrow of a child with FA of the C group (FA-C) and in FAC −/− mice occurred at significantly lower IFN doses (by an order of magnitude) than did the apoptotic responses of normal HPC. Treatment of FA-C CD34+ cells with low doses of recombinant IFN-γ, inhibited growth of colony forming unit granulocyte-macrophage and burst-forming unit erythroid, while treatment with blocking antibodies to fas augmented clonal growth and abrogated the clonal inhibitory effect of IFN-γ. Transfer of the normal FAC gene into FA-C B-cell lines prevented mitomycin C–induced apoptosis, but did not suppress fas expression or inhibit the primed fas pathway. However, the kinetics of Stat1-phosphate decay in IFN-γ–treated cells was prolonged in mutant cells and was normalized by transduction of the normal FAC gene. Therefore, the normal FAC protein serves, in part, to modulate IFN-γ signals. HPC bearing inactivating mutations of FAC fail to normally modulate IFN-γ signals and, as a result, undergo apoptosis executed through the fas pathway.


1996 ◽  
Vol 76 (06) ◽  
pp. 0993-0997
Author(s):  
Zhao-Yan Li ◽  
Xiao-Wei Wu ◽  
Tie-Fu Yu ◽  
Eric C-Y Lian

SummaryBy means of CM-Sephadex C-25, DEAE-Sephadex A-50, Sephadex G-200, and Sephadex G-75 chromatographies, a lupus anticoagulant like protein (LALP) from Agkistrodon halys brevicaudus was purified. On SDS-PAGE, the purified LALP had a molecular weight of 25,500 daltons under non-reducing condition and 15,000 daltons under reducing condition. The isoelectric point was pH 5.6. Its N terminal amino acid sequencing revealed a mixture of 2 sequences: DCP(P/S)(D/G)WSSYEGH(C/R)Q(Q/K). It was devoid of phospho-lipaseA, fibrino(geno)lytic, 5′-nucleotidase, L-amino acid oxidase, phosphomonoesterase, phosphodiesterase and thrombin-like activities, which were found in crude venom. In the presence of LALP, PT, aPTT, and dRVVT of human plasma were markedly prolonged and its effects were concentration-dependent but time-independent. The inhibitory effect of LALP on the plasma clotting time was enhanced by decreasing phospholipid concentration in TTI test. The individual clotting factor activity was not affected by LALP when higher dilutions of LALP-plasma mixture were used for assay. Russell’s viper venom time was shortened when high phospholipid confirmatory reagent was used. Therefore, the protein has lupus anticoagulant property.


Author(s):  
Xiao-Feng Zhu ◽  
Xiao-Jin Li ◽  
Zhong-Lian Cao ◽  
Xiu-Jie Liu ◽  
Ping Yang ◽  
...  

Background: A Chinese folk medicine plant Pleurospermum lindleyanum possesses pharmacological activities of heat-clearing, detoxifying and preventing from hepatopathy, coronary heart disease, hypertension, and high altitude sickness. We isolated and characterized its constituents to investigate its synergistic effects against human hepatoma SMMC-7721 cells. Objective: The aim of this study was to explore the synergistic anti-cancer activities of isolates from P. lindleyanum with 5-FU on hepatoma SMMC-7721 cells in vitro and their primary mechanisms. Methods: Sequential chromatographic techniques were conducted for the isolation studies. The isolates structures were established by spectroscopic analysis as well as X-ray crystallographic diffraction. Growth inhibition was detected by MTT assay. The isobologram method was used to assess the effect of drug combinations. Flow cytometry and western blot were used to examine apoptosis and protein expression. Results: A new coumarin (16), along with sixteen known compounds, were isolated from the whole plant of P. lindleyanum and their structures were elucidated by spectroscopic methods. Four coumarins (2, 3, 5, and 16), two flavonoids (8 and 9) and three phytosterols and triterpenes (12-14) were found to synergistically enhance the inhibitory effect of 5-FU against SMMC-7721 cells. Among them, compounds 3 and 16 exhibited the best synergistic effects with IC50 of 5-FU reduced by 16-fold and 22-fold possessing the minimum Combination Index (CI) 0.34 and 0.27. The mechanism of action of combinations might be through synergistic arresting for the cell cycle at G1 phases and the induction of apoptosis. Moreover, western blotting and molecular docking revealed that compounds 3 or 5 might promote 5-FU-induced apoptosis by regulating the expression of Caspase 9 and PARP. Conclusion: Constituents from P. lindleyanum may improve the treatment effectiveness of 5-FU against hepatocellular carcinoma cells.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2116
Author(s):  
Xiaoyong Wang ◽  
Lijuan Zhang ◽  
Qi Dai ◽  
Hongzong Si ◽  
Longyun Zhang ◽  
...  

The high concentrations of individual phytochemicals in vitro studies cannot be physiologically achieved in humans. Our solution for this concentration gap between in vitro and human studies is to combine two or more phytochemicals. We screened 12 phytochemicals by pairwise combining two compounds at a low level to select combinations exerting the synergistic inhibitory effect of breast cancer cell proliferation. A novel combination of luteolin at 30 μM (LUT30) and indole-3-carbinol 40 μM (I3C40) identified that this combination (L30I40) synergistically constrains ERα+ breast cancer cell (MCF7 and T47D) proliferation only, but not triple-negative breast cancer cells. At the same time, the individual LUT30 and I3C40 do not have this anti-proliferative effect in ERα+ breast cancer cells. Moreover, this combination L30I40 does not have toxicity on endothelial cells compared to the current commercial drugs. Similarly, the combination of LUT and I3C (LUT10 mg + I3C10 mg/kg/day) (IP injection) synergistically suppresses tumor growth in MCF7 cells-derived xenograft mice, but the individual LUT (10 mg/kg/day) and I3C (20 mg/kg/day) do not show an inhibitory effect. This combination synergistically downregulates two major therapeutic targets ERα and cyclin dependent kinase (CDK) 4/6/retinoblastoma (Rb) pathway, both in cultured cells and xenograft tumors. These results provide a solid foundation that a combination of LUT and I3C may be a practical approach to treat ERα+ breast cancer cells after clinical trials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jizhi Wu ◽  
Guangqi Zhang ◽  
Hui Xiong ◽  
Yuguang Zhang ◽  
Gang Ding ◽  
...  

AbstractOxygen therapy has been widely used in clinical practice, especially in anesthesia and emergency medicine. However, the risks of hyperoxemia caused by excessive O2 supply have not been sufficiently appreciated. Because nasal inhalation is mostly used for oxygen therapy, the pulmonary capillaries are often the first to be damaged by hyperoxia, causing many serious consequences. Nevertheless, the molecular mechanism by which hyperoxia injures pulmonary capillary endothelial cells (LMECs) has not been fully elucidated. Therefore, we systematically investigated these issues using next-generation sequencing and functional research techniques by focusing on non-coding RNAs. Our results showed that hyperoxia significantly induced apoptosis and profoundly affected the transcriptome profiles of LMECs. Hyperoxia significantly up-regulated miR-181c-5p expression, while down-regulated the expressions of NCAPG and lncRNA-DLEU2 in LMECs. Moreover, LncRNA-DLEU2 could bind complementarily to miR-181c-5p and acted as a miRNA sponge to block the inhibitory effect of miR-181c-5p on its target gene NCAPG. The down-regulation of lncRNA-DLEU2 induced by hyperoxia abrogated its inhibition of miR-181c-5p function, which together with the hyperoxia-induced upregulation of miR-181c-5p, all these significantly decreased the expression of NCAPG, resulting in apoptosis of LMECs. Our results demonstrated a ceRNA network consisting of lncRNA-DLEU2, miR-181c-5p and NCAPG, which played an important role in hyperoxia-induced apoptosis of vascular endothelial injury. Our findings will contribute to the full understanding of the harmful effects of hyperoxia and to find ways for effectively mitigating its deleterious effects.


Sign in / Sign up

Export Citation Format

Share Document