Identification of Linkage Disequilibrium SNPs from a Kidney-Yang Deficiency Syndrome Pedigree

2009 ◽  
Vol 37 (03) ◽  
pp. 427-438 ◽  
Author(s):  
Wei Jun Ding ◽  
Ying Zi Zeng ◽  
Wei Hong Li ◽  
Tian E. Zhang ◽  
Wei Wei Liu ◽  
...  

In order to probe the genetic traits of Kidney-yang Deficiency Syndrome (KDS), we employed a national standard of KDS diagnosis for the collection of KDS subjects. Each candidate KDS subject from a typical family was diagnosed by 5 independent physicians of Traditional Chinese Medicine (TCM), and repeated for 3 years, all on the first Saturday of December. Fifteen samples of genomic DNA were isolated and genotyped by Affymetrix 100 K arrays of single nucleotide polymorphism (SNP). Then appropriate tools were used for the analysis of linkage disequilibrium (LD) and bioinformatic mining of LD SNPs. The results indicated that our procedure of TCM diagnosis can effectively collect KDS subjects and therefore provide substantial basis for the linkage analysis of KDS. Five SNPs (i.e. rs514207, rs1054020, rs7685923, rs10515889 and rs10516202) were identified as LD SNPs from this KDS family, representing an unprecedented set of LD SNPs derived from TCM syndrome. These SNPs demonstrate midrange linkage disequilibrium within the KDS family. Two genes with established functions were identified within 100 bp of these SNPs. One is Homo sapiens double cortin domain containing 5, which interacts selectively with mono-, di- or tri-saccharide carbohydrate and involves certain signaling cascades. Another one, leucyl-tRNA synthetase, is also a pleiotropic gene response to cysteinyl-tRNA aminoacylation and protein biosynthesis. In conclusion, KDS is involved in special SNP linkage disequilibrium in the intragenic level, and genes within the flanks of these SNPs suggest some essential symptoms of KDS. However, definitive evidence to confirm or exclude these loci and to establish their biological activities will be required.

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Li Ping Zhou ◽  
Wei Wei Liu ◽  
Tian E. Zhang ◽  
Wei Hong Li ◽  
Ling Ling Tan ◽  
...  

Objective. To explore the genetic traits of Kidney-yang deficiency syndrome (KDS).Design. Twelve KDS subjects and three spouses from a typical KDS family were recruited. Their genomic DNA samples were genotyped by Affymetrix 100K single-nucleotide polymorphism (SNP) arrays. The linkage disequilibrium (LD) SNPs were generated using GeneChip DNA analysis software (GDAS, Affymetrix). Genes located within 100 bp of the flanks of LD SNPs were mined via GeneView. 29 exons of the doublecortin domain containing 5 (DCDC5), a representative gene within the flank of an LD SNP, were resequenced.Results. Five LD SNPs display midrange linkage with KDS. Two genes with established functions, DCDC5 and Leucyl-tRNA synthetase, were mined in the flanks of LD SNPs. Resequencing of DCDC5 revealed a nonsynonymous variation, in which 3764T/A was replaced by C/G. Accordingly, the Ser1172was substituted by Pro1172. The S1172P substitution effect was evaluated as “possibly damaging” by PolyPhen.Conclusion. We have identified a genomic variation of DCDC5 based on the LD SNPs derived from a KDS family. DCDC5 and other genes surrounding these SNPs display some relationships with key symptoms of KDS.


2020 ◽  
Vol 40 (4) ◽  
pp. 874-884 ◽  
Author(s):  
Gopi K. Kolluru ◽  
Xinggui Shen ◽  
Christopher G. Kevil

Hydrogen sulfide has emerged as an important gaseous signaling molecule and a regulator of critical biological processes. However, the physiological significance of hydrogen sulfide metabolites such as persulfides, polysulfides, and other reactive sulfur species (RSS) has only recently been appreciated. Emerging evidence suggests that these RSS molecules may have similar or divergent regulatory roles compared with hydrogen sulfide in various biological activities. However, the chemical nature of persulfides and polysulfides is complex and remains poorly understood within cardiovascular and other pathophysiological conditions. Recent reports suggest that RSS can be produced endogenously, with different forms having unique chemical properties and biological implications involving diverse cellular responses such as protein biosynthesis, cell-cell barrier functions, and mitochondrial bioenergetics. Enzymes of the transsulfuration pathway, CBS (cystathionine beta-synthase) and CSE (cystathionine gamma-lyase), may also produce RSS metabolites besides hydrogen sulfide. Moreover, CARSs (cysteinyl-tRNA synthetase) are also able to generate protein persulfides via cysteine persulfide (CysSSH) incorporation into nascently formed polypeptides suggesting a new biologically relevant amino acid. This brief review discusses the biochemical nature and potential roles of RSS, associated oxidative stress redox signaling, and future research opportunities in cardiovascular disease.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Song Yang ◽  
Hefang Xu ◽  
Baosheng Zhao ◽  
Shasha Li ◽  
Tingting Li ◽  
...  

Semen Cuscutae is a well-known Chinese medicine which has been used to nourish kidney in China for thousands of years. The crude product of semen Cuscutae (CP) and its salt-processed product (SPP) are separately used in clinic for their different effects. The study was designed to investigate the influence of processing from semen Cuscutae on chemical components and biological effects. The principal component analysis and quantitative analysis were used to study the differences of the chemical components. The effects of nourishing kidney were detected to compare the differences between the CP and SPP. The PCA results showed that the obvious separation was achieved in the CP and SPP samples. The results of quantitative analysis showed that quercetin and total flavonoids had significantly increased after salt processing while hyperoside had decreased. The comparison of CP and SPP on biological activities showed that both of them could ameliorate the kidney-yang deficiency syndrome by restoring the level of sex hormone, improving the immune function and antioxidant effect. However, SPP was better in increasing the level of T and the viscera weight of testicle and epididymis, improving the antioxidant effect. The results suggested that salt processing changed its chemical profile, which in turn enhanced its biological activities.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yijia Zeng ◽  
Tingna Li ◽  
Xiaorui Zhang ◽  
Yuanyuan Ren ◽  
Qinwan Huang ◽  
...  

Objective. Modern research shows that Haima Duobian pill (HDP) can relieve the kidney yang deficiency syndrome (KYDS), but the mechanism is still unclear. The aim of this work was to study the effects of HDP in a rat model of KYDS. Materials and Methods. The network pharmacology methods were used to predict the therapeutic effects of Haima Duobian pill. Adenine was used to establish the rat model of kidney yang deficiency syndrome. The general physical signs of rats were observed after different doses of Haima Duobian pill (HDP) were given. Serum cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone (T), estradiol (E2), and gonadotropin-releasing hormone (GnRH) levels were determined using enzyme-linked immunosorbent assay (ELISA) kits. Then, the histopathologic changes and sperm activity were detected. Results. HDP could improve the general signs of kidney yang deficiency syndrome rats. After the rats were treated with HDP, the expression of cGMP and E2 was significantly inhibited and the expression of cAMP and T was significantly increased. The pathological damage of testis, epididymis, and seminal vesicle was alleviated, and the sperm activity was improved. Conclusion. For adenine-induced kidney yang deficiency syndrome in rats, HDP had a significant therapeutic effect.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ying Zhang ◽  
Yuewu Wang ◽  
Song Yang ◽  
Yunfeng Xiao ◽  
Haibin Guan ◽  
...  

As a well-known Chinese herb medicine, the Cistanche deserticola has been used for the treatment of kidney deficiency syndrome in China for thousands of years. Both the raw product of Cistanche deserticola slices (RCD) and its Wine Steam-Processed Product (WSCD) are used clinically for different effects. In this study, the influences of steaming process with wine (SPW) from Cistanche deserticola on chemical compositions and biological effects were investigated. The principal component analysis (PCA) and quantitative analysis were used to study the differences of the chemical compositions. The effects of nourishing kidney were also investigated to compare the differences between the RCD and the WSCD. The PCA results indicated that the obvious separation was achieved in the RCD and WSCD. The results of quantitative analysis showed that the WSCD has higher amounts of total polysaccharides, total PhGs, isoacteoside, and osmanthuside B than RCD, while the content of 2′-acetylacteoside and acteoside decreased after the SPW. The comparison of RCD and WSCD on biological activities showed that both could restore the level of sex hormone in the model of kidney-yang deficiency and improve the antioxidant effect. The WSCD were much better in increasing the viscera weight of kidney and seminal vesicle. The results indicated that SPW changed its chemical components and enhanced its biological activities.


2016 ◽  
Vol 192 ◽  
pp. 217-224 ◽  
Author(s):  
Rong Rong ◽  
Rong-rong Li ◽  
Yan-bao Hou ◽  
Jing Li ◽  
Jia-xing Ding ◽  
...  

2018 ◽  
Vol 46 (01) ◽  
pp. 137-155 ◽  
Author(s):  
Ang Ying ◽  
Qing-Tao Yu ◽  
Li Guo ◽  
Wen-Song Zhang ◽  
Jin-Feng Liu ◽  
...  

Ginseng has been reported to have diverse pharmacological effects. One of the therapeutic claims for ginseng is to enhance sexual function. Ginsenosides are considered as the major active constituents. A steaming process can alter the ginsenoside profile of ginseng products. The structure–function relationship of ginsenosides in the treatment of erectile dysfunction (ED) has not been investigated yet. In this work, 15 different processed ginsengs are produced by steaming, and 13 major ginsensosides are quantified by liquid chromatography with UV detection, including Rg1, Re, Rf, Rb1, Rc, Rb2, Rf, Rk3, Rh4, 20S-Rg3, 20R-Rg3, Rk1, and Rg5. Their anti-ED activities are screened using hydrocortisone-induced mice model (Kidney Yang Deficiency Syndrome in Chinese Medicine) and primary corpus cavernosum smooth muscle cells (CCSMCs). A processed ginseng with steaming treatment at 120[Formula: see text]C for 4[Formula: see text]h and five times possesses abundant ginsenosides Rk1, Rk3, Rh4 and Rg5 transformed via deglycosylation and dehydroxylation, and produces optimal activity against ED. The number of sugar molecules, structure of hydroxyl groups and stereoselectivity in ginsenosides affect their anti-ED activity. Among the 13 ginsenosides, Rk1, Rk3, Rh4 and Rg5 are the most efficient in decreasing intracellular calcium levels by inhibiting phosphodiesterase 5A (PDE5A) to reduce the degradation of cyclic guanosine monophosphate (cGMP) in CCSMCs. Rg5 also restrain hypoxia inducible factor-1[Formula: see text] (HIF-1[Formula: see text] expression in hypoxia state, and increase endothelial nitric oxide synthase (eNOS) expression in isolated rat cavernous tissue. These observations suggest a role for steamed ginseng containing two pairs of geometric isomers (i.e., Rk1/Rg5 and Rk3/Rh4) in the treatment of ED.


2005 ◽  
Vol 33 (4) ◽  
pp. 582-585 ◽  
Author(s):  
J. Hardy ◽  
A. Pittman ◽  
A. Myers ◽  
K. Gwinn-Hardy ◽  
H.C. Fung ◽  
...  

The tau (MAPT) locus exists as two distinct clades, H1 and H2. The H1 clade has a normal linkage disequilibrium structure and is the only haplotype found in all populations except those derived from Caucasians. The H2 haplotype is the minor haplotype in Caucasian populations and is not found in other populations. It shows no recombination over a region of 2 Mb with the more common H1 haplotype. The distribution of the haplotype and analysis of the slippage of dinucleotide repeat markers within the haplotype suggest that it entered Homo sapiens populations between approx. 10000 and 30000 years ago. However, sequence comparison of the H2 haplotype with the H1 haplotype and with the chimp sequence suggests that the common founder of the H1 and H2 haplotypes was far earlier than this. We suggest that the H2 haplotype is derived from Homo neanderthalensis and entered H. sapiens populations during the co-existence of these species in Europe from approx. 45000 to 18000 years ago and that the H2 haplotype has been under selection pressure since that time, possibly because of the role of this H1 haplotype in neurodegenerative disease.


Sign in / Sign up

Export Citation Format

Share Document