scholarly journals Restricted Weyl symmetry and spontaneous symmetry breakdown of conformal symmetry

2021 ◽  
Vol 36 (28) ◽  
pp. 2150203
Author(s):  
Ichiro Oda

In this paper, we elucidate the relation between the restricted Weyl symmetry and spontaneous symmetry breakdown of conformal symmetry. Using a scalar–tensor gravity, we show that the restricted Weyl symmetry leads to spontaneous symmetry breakdown of a global scale symmetry when the vacuum expectation value of a scalar field takes a nonzero value. It is then shown that this spontaneous symmetry breakdown induces spontaneous symmetry breakdown of special conformal symmetry in a flat Minkowski spacetime, but the resultant Nambu–Goldstone boson is not an independent physical mode but expressed in terms of the derivative of the dilaton which is the Nambu–Goldstone boson of the global scale symmetry. In other words, the theories which are invariant under the general coordinate transformation and the restricted Weyl transformation exhibit a Nambu–Goldstone phase where both special conformal transformation and dilatation are spontaneously broken while preserving the Poincaré symmetry.

1992 ◽  
Vol 01 (02) ◽  
pp. 371-377 ◽  
Author(s):  
B. LINET

In a conical spacetime, we determine the twisted Euclidean Green’s function for a massive scalar field. In particular, we give a convenient form for studying the vacuum averages. We then derive an integral expression of the vacuum expectation value <Φ2(x)>. In the Minkowski spacetime, we express <Φ2(x)> in terms of elementary functions.


2018 ◽  
Vol 168 ◽  
pp. 07002 ◽  
Author(s):  
Dongmin Jang ◽  
Yoonbai Kim ◽  
O-Kab Kwon ◽  
D. D. Tolla

We test the gauge/gravity duality between the N = 6 mass-deformed ABJM theory with Uk(N) × U-k(N) gauge symmetry and the 11-dimensional supergravity on LLM geometries with SO(4)=ℤk × SO(4)=ℤk isometry. Our analysis is based on the evaluation of vacuum expectation values of chiral primary operators from the supersymmetric vacua of mass-deformed ABJM theory and from the implementation of Kaluza-Klein (KK) holography to the LLM geometries. We focus on the chiral primary operator (CPO) with conformal dimension Δ = 1. The non-vanishing vacuum expectation value (vev) implies the breaking of conformal symmetry. In that case, we show that the variation of the holographic entanglement entropy (HEE) from it’s value in the CFT, is related to the non-vanishing one-point function due to the relevant deformation as well as the source field. Applying Ryu Takayanagi’s HEE conjecture to the 4-dimensional gravity solutions, which are obtained from the KK reduction of the 11-dimensional LLM solutions, we calculate the variation of the HEE. We show how the vev and the value of the source field determine the HEE.


1991 ◽  
Vol 06 (03) ◽  
pp. 479-486 ◽  
Author(s):  
KIN-WANG NG

A theory of gravitation with a conformally coupled scalar field is considered in which the gravitational “constant” is associated with the vacuum expectation value of the scalar field. It is found that the universe will remain dominated by classical radiation unless the conformal symmetry is broken. The equations of motion thus derived bear a de Sitter phase solution, which could have an exponential growth of the cosmic scale factor with no vacuum energy. We discuss the cosmological implications of this kind of “inflation”. We also find that in the present theory the smallness of the vacuum energy for most time of the universe is due to the constancy of the gravitational “constant”.


2008 ◽  
Vol 22 (31) ◽  
pp. 3025-3034 ◽  
Author(s):  
MASAHIRO MAENO ◽  
ICHIRO ODA

Motivated by ideas obtained from both ghost condensation and gravitational Higgs mechanism, we attempt to find classical solutions in the unitary gauge in general ghost condensation models. It is shown that depending on the form of scalar fields in an action, there are three kinds of exact solutions, which are (anti-) de Sitter space–time, polynomially expanding universes and flat Minkowski space–time. We briefly comment on gravitational Higgs mechanism in these models where we have massive gravitons of five degrees of freedom and one unitary scalar field (Nambu–Goldstone boson) after spontaneous symmetry breakdown of general coordinate reparametrization invariance. The models at hand are free from the problem associated with the non-unitary propagating mode.


2022 ◽  
Vol 2022 (01) ◽  
pp. 010
Author(s):  
S. Bellucci ◽  
W. Oliveira dos Santos ◽  
E.R. Bezerra de Mello ◽  
A.A. Saharian

Abstract We investigate topological effects of a cosmic string and compactification of a spatial dimension on the vacuum expectation value (VEV) of the energy-momentum tensor for a fermionic field in (4+1)-dimensional locally AdS spacetime. The contribution induced by the compactification is explicitly extracted by using the Abel-Plana summation formula. The mean energy-momentum tensor is diagonal and the vacuum stresses along the direction perpendicular to the AdS boundary and along the cosmic string are equal to the energy density. All the components are even periodic functions of the magnetic fluxes inside the string core and enclosed by compact dimension, with the period equal to the flux quantum. The vacuum energy density can be either positive or negative, depending on the values of the parameters and the distance from the string. The topological contributions in the VEV of the energy-momentum tensor vanish on the AdS boundary. Near the string the effects of compactification and gravitational field are weak and the leading term in the asymptotic expansion coincides with the corresponding VEV in (4+1)-dimensional Minkowski spacetime. At large distances, the decay of the cosmic string induced contribution in the vacuum energy-momentum tensor, as a function of the proper distance from the string, follows a power law. For a cosmic string in the Minkowski bulk and for massive fields the corresponding fall off is exponential. Within the framework of the AdS/CFT correspondence, the geometry for conformal field theory on the AdS boundary corresponds to the standard cosmic string in (3+1)-dimensional Minkowski spacetime compactified along its axis.


Author(s):  
Michael Kachelriess

Noethers theorem shows that continuous global symmetries lead classically to conservation laws. Such symmetries can be divided into spacetime and internal symmetries. The invariance of Minkowski space-time under global Poincaré transformations leads to the conservation of the four-momentum and the total angular momentum. Examples for conserved charges due to internal symmetries are electric and colour charge. The vacuum expectation value of a Noether current is shown to beconserved in a quantum field theory if the symmetry transformation keeps the path-integral measure invariant.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 795
Author(s):  
Vincent Lahoche ◽  
Mohamed Ouerfelli ◽  
Dine Ousmane Samary ◽  
Mohamed Tamaazousti

The tensorial principal component analysis is a generalization of ordinary principal component analysis focusing on data which are suitably described by tensors rather than matrices. This paper aims at giving the nonperturbative renormalization group formalism, based on a slight generalization of the covariance matrix, to investigate signal detection for the difficult issue of nearly continuous spectra. Renormalization group allows constructing an effective description keeping only relevant features in the low “energy” (i.e., large eigenvalues) limit and thus providing universal descriptions allowing to associate the presence of the signal with objectives and computable quantities. Among them, in this paper, we focus on the vacuum expectation value. We exhibit experimental evidence in favor of a connection between symmetry breaking and the existence of an intrinsic detection threshold, in agreement with our conclusions for matrices, providing a new step in the direction of a universal statement.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 127
Author(s):  
Yuri V. Grats ◽  
Pavel Spirin

The effects of vacuum polarization associated with a massless scalar field near pointlike source with a zero-range potential in three spatial dimensions are analyzed. The “physical” approach consists in the usage of direct delta-potential as a model of pointlike interaction. We use the Perturbation theory in the Fourier space with dimensional regularization of the momentum integrals. In the weak-field approximation, we compute the effects of interest. The “mathematical” approach implies the self-adjoint extension technique. In the Quantum-Field-Theory framework we consider the massless scalar field in a 3-dimensional Euclidean space with an extracted point. With appropriate boundary conditions it is considered an adequate mathematical model for the description of a pointlike source. We compute the renormalized vacuum expectation value ⟨ϕ2(x)⟩ren of the field square and the renormalized vacuum averaged of the scalar-field’s energy-momentum tensor ⟨Tμν(x)⟩ren. For the physical interpretation of the extension parameter we compare these results with those of perturbative computations. In addition, we present some general formulae for vacuum polarization effects at large distances in the presence of an abstract weak potential with finite-sized compact support.


1987 ◽  
Vol 02 (03) ◽  
pp. 713-728 ◽  
Author(s):  
SWEE-PING CHIA

The λϕ4 theory with tachyonic mass is analyzed at T ≠ 0 using an improved one-loop approximation in which each of the bare propagators in the one-loop diagram is replaced by a dressed propagator to take into account the higher loop effects. The dressed propagator is characterized by a temperature-dependent mass which is determined by a self-consistent relation. Renomalization is found to be necessarily temperature-dependent. Real effective potential is obtained, giving rise to real effective mass and real coupling constant. For T < Tc, this is achieved by first shifting the ϕ field by its zero-temperature vacuum expectation value. The effective coupling constant is found to exhibit the striking behavior that it approaches a constant nonzero value as T → ∞.


Sign in / Sign up

Export Citation Format

Share Document