B MESON FACTORIES

1989 ◽  
Vol 04 (26) ◽  
pp. 2589-2593 ◽  
Author(s):  
DAVID B. CLINE

Particle physics makes progress in three Frontiers: (1) High Energy Frontier, (2) High Intensity Frontier, and (3) High Precision Frontier. Category (1) will be dominated by the SSC and LHC experiments in the next decade and (3) by precise measurements of the (g−2)μ and sin2θw. In category (2) there will be a new round of intense “factories” constructed for rare K decays, [τ charm] studies, ϕ Factories and B Factories. Each of these Factories provide new physics possibilities as illustrated in Table 1. Note that the High Intensity Frontier is sometimes the same as the High Precision Frontier since high statistics are usually needed for high precision. In this brief note we describe some of the current possibilities for B Meson Factories.

2014 ◽  
Vol 29 (03) ◽  
pp. 1430003
Author(s):  
JAMES L. PINFOLD

In 2010, the CERN (European Centre for Particle Physics Research) Research Board unanimously approved MoEDAL, the seventh international experiment at the Large Hadron Collider (LHC), which is designed to search for avatars of new physics signified by highly ionizing particles. A MoEDAL discovery would have revolutionary implications for our understanding of the microcosm, providing insights into such fundamental questions as: do magnetic monopoles exist, are there extra dimensions or new symmetries of nature; what is the mechanism for the generation of mass; what is the nature of dark matter and how did the big bang unfurl at the earliest times.


Author(s):  
Subhaditya Bhattacharya ◽  
José Wudka

Standard Model (SM) of particle physics has achieved enormous success in describing the interactions among the known fundamental constituents of nature, yet it fails to describe phenomena for which there is very strong experimental evidence, such as the existence of dark matter, and which point to the existence of new physics not included in that model; beyond its existence, experimental data, however, have not provided clear indications as to the nature of that new physics. The effective field theory (EFT) approach, the subject of this review, is designed for this type of situations; it provides a consistent and unbiased framework within which to study new physics effects whose existence is expected but whose detailed nature is known very imperfectly. We will provide a description of this approach together with a discussion of some of its basic theoretical aspects. We then consider applications to high-energy phenomenology and conclude with a discussion of the application of EFT techniques to the study of dark matter physics and its possible interactions with the SM. In several of the applications we also briefly discuss specific models that are ultraviolet complete and may realize the effects described by the EFT.


2019 ◽  
Vol 206 ◽  
pp. 08001
Author(s):  
Tadeusz Lesiak

A future giant electron-positron collider, operating at the energy frontier, is a natural proposal in order to push particle physics into new regime of precise measurements, in particular in the sectors of electroweak observables and Higgs boson parameters. The four projects of such accelerators: two linear (ILC and CLIC) and two circular (FCC and CEPC) are currently in various stages of development. In view of the update of European HEP strategy for particle physics and expectations of important decisions from Japan, China and USA, the next few years will be critical as far as the decisions about the construction of such colliders are concerned. The paper concisely reviews the relevant aspects and challenges of the proposed accelerators and detectors along with the presumed schedules of construction and operation. The motivation and very attractive physics program for new e+e− colliders, spanning in particular perspectives in Higgs, electroweak, and neutrino sectors, together with expectations of searches for New Physics, will be discussed as well.


Author(s):  
Peter Jenni

For the past year, experiments at the Large Hadron Collider (LHC) have started exploring physics at the high-energy frontier. Thanks to the superb turn-on of the LHC, a rich harvest of initial physics results have already been obtained by the two general-purpose experiments A Toroidal LHC Apparatus (ATLAS) and the Compact Muon Solenoid (CMS), which are the subject of this report. The initial data have allowed a test, at the highest collision energies ever reached in a laboratory, of the Standard Model (SM) of elementary particles, and to make early searches Beyond the Standard Model (BSM). Significant results have already been obtained in the search for the Higgs boson, which would establish the postulated electro-weak symmetry breaking mechanism in the SM, as well as for BSM physics such as Supersymmetry (SUSY), heavy new particles, quark compositeness and others. The important, and successful, SM physics measurements are giving confidence that the experiments are in good shape for their journey into the uncharted territory of new physics anticipated at the LHC.


Author(s):  
Rolf-Dieter Heuer

This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron–positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron–proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Giovanni Banelli ◽  
Ennio Salvioni ◽  
Javi Serra ◽  
Tobias Theil ◽  
Andreas Weiler

Abstract We study the phenomenology of a strongly-interacting top quark at future hadron and lepton colliders, showing that the characteristic four-top contact operators give rise to the most significant effects. We demonstrate the extraordinary potential of a 100 TeV proton-proton collider to directly test such non-standard interactions in four-top production, a process that we thoroughly analyze in the same-sign dilepton and trilepton channels, and explore in the fully hadronic channel. Furthermore, high-energy electron-positron colliders, such as CLIC or the ILC, are shown to exhibit an indirect yet remarkable sensitivity to four-top operators, since these constitute, via renormalization group evolution, the leading new-physics deformations in top-quark pair production. We investigate the impact of our results on the parameter space of composite Higgs models with a strongly-coupled (right-handed) top quark, finding that four-top probes provide the best sensitivity on the compositeness scale at the future energy frontier. In addition, we investigate mild yet persisting LHC excesses in multilepton plus jets final states, showing that they can be consistently described in the effective field theory of such a new-physics scenario.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Michael J. Ramsey-Musolf

Abstract Determining the thermal history of electroweak symmetry breaking (EWSB) is an important challenge for particle physics and cosmology. Lattice simulations indicate that EWSB in the Standard Model (SM) occurs through a crossover transition, while the presence of new physics beyond the SM could alter this thermal history. The occurrence of a first order EWSB transition would be particularly interesting, providing the needed pre-conditions for generation of the cosmic matter-antimatter asymmetry and sources for potentially observable gravitational radiation. I provide simple, generic arguments that if such an alternate thermal history exists, the new particles involved cannot be too heavy with respect to the SM electroweak temperature, nor can they interact too feebly with the SM Higgs boson. These arguments do not rely on the decoupling limit. I derive corresponding quantitative expectations for masses and interaction strengths which imply that their effects could in principle be observed (or ruled out) by prospective next generation high energy colliders. The simple, generic arguments provide a quantitative, parametric understanding of results obtained in a wide range of explicit model studies; relate them explicitly to the electroweak temperature; and delineate broad contours of collider phenomenology pertaining to a non-standard history of EWSB.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Thorben Finke ◽  
Michael Krämer ◽  
Alessandro Morandini ◽  
Alexander Mück ◽  
Ivan Oleksiyuk

Abstract Autoencoders are widely used in machine learning applications, in particular for anomaly detection. Hence, they have been introduced in high energy physics as a promising tool for model-independent new physics searches. We scrutinize the usage of autoencoders for unsupervised anomaly detection based on reconstruction loss to show their capabilities, but also their limitations. As a particle physics benchmark scenario, we study the tagging of top jet images in a background of QCD jet images. Although we reproduce the positive results from the literature, we show that the standard autoencoder setup cannot be considered as a model-independent anomaly tagger by inverting the task: due to the sparsity and the specific structure of the jet images, the autoencoder fails to tag QCD jets if it is trained on top jets even in a semi-supervised setup. Since the same autoencoder architecture can be a good tagger for a specific example of an anomaly and a bad tagger for a different example, we suggest improved performance measures for the task of model-independent anomaly detection. We also improve the capability of the autoencoder to learn non-trivial features of the jet images, such that it is able to achieve both top jet tagging and the inverse task of QCD jet tagging with the same setup. However, we want to stress that a truly model-independent and powerful autoencoder-based unsupervised jet tagger still needs to be developed.


2015 ◽  
Vol 30 (23) ◽  
pp. 1544001 ◽  
Author(s):  
Vladimir D. Shiltsev

High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.


Author(s):  
Abraham Seiden

The goal for the detection of new physics processes in particle collisions at Large Hadron Collider energies, combined with the broad spectrum of possibilities for how the physics might be manifest, leads to detectors of unprecedented scope and size for particle physics experiments at colliders. The resulting two detectors, ATLAS (A Toroidal LHC ApparatuS) and CMS (compact muon spectrometer), must search for the new physics processes within very complex events arising from the very high-energy collisions. The two experiments share many basic design features—in particular, the need for very selective triggering to weed out the bulk of the uninteresting events; the order in which detector types are arrayed in order to provide maximum information about each event; and the very large angular coverage required to constrain the energy carried by any non-interacting particles. However, within these basic constraints, the detectors are quite different given the different emphases placed on issues such as resolution and background rejection. Both common features and the distinct differences will be presented.


Sign in / Sign up

Export Citation Format

Share Document