scholarly journals The electroweak phase transition: a collider target

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Michael J. Ramsey-Musolf

Abstract Determining the thermal history of electroweak symmetry breaking (EWSB) is an important challenge for particle physics and cosmology. Lattice simulations indicate that EWSB in the Standard Model (SM) occurs through a crossover transition, while the presence of new physics beyond the SM could alter this thermal history. The occurrence of a first order EWSB transition would be particularly interesting, providing the needed pre-conditions for generation of the cosmic matter-antimatter asymmetry and sources for potentially observable gravitational radiation. I provide simple, generic arguments that if such an alternate thermal history exists, the new particles involved cannot be too heavy with respect to the SM electroweak temperature, nor can they interact too feebly with the SM Higgs boson. These arguments do not rely on the decoupling limit. I derive corresponding quantitative expectations for masses and interaction strengths which imply that their effects could in principle be observed (or ruled out) by prospective next generation high energy colliders. The simple, generic arguments provide a quantitative, parametric understanding of results obtained in a wide range of explicit model studies; relate them explicitly to the electroweak temperature; and delineate broad contours of collider phenomenology pertaining to a non-standard history of EWSB.

Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Antonio Costantini ◽  
Federico De Lillo ◽  
Fabio Maltoni ◽  
Luca Mantani ◽  
Olivier Mattelaer ◽  
...  

Abstract High-energy lepton colliders with a centre-of-mass energy in the multi-TeV range are currently considered among the most challenging and far-reaching future accelerator projects. Studies performed so far have mostly focused on the reach for new phenomena in lepton-antilepton annihilation channels. In this work we observe that starting from collider energies of a few TeV, electroweak (EW) vector boson fusion/scattering (VBF) at lepton colliders becomes the dominant production mode for all Standard Model processes relevant to studying the EW sector. In many cases we find that this also holds for new physics. We quantify the size and the growth of VBF cross sections with collider energy for a number of SM and new physics processes. By considering luminosity scenarios achievable at a muon collider, we conclude that such a machine would effectively be a “high-luminosity weak boson collider,” and subsequently offer a wide range of opportunities to precisely measure EW and Higgs couplings as well as discover new particles.


Author(s):  
Silvia Ferrario Ravasio

AbstractPrecise theoretical predictions are a key ingredient for an accurate determination of the structure of the Lagrangian of particle physics, including its free parameters, which summarizes our understanding of the fundamental interactions among particles. Furthermore, due to the absence of clear new-physics signals, precise theoretical calculations are required to pin down possible subtle deviations from the Standard Model predictions. The error associated with such calculations must be scrutinized, as non-perturbative power corrections, dubbed infrared renormalons, can limit the ultimate precision of truncated perturbative expansions in quantum chromodynamics. In this review, we focus on linear power corrections that can arise in certain kinematic distributions relevant for collider phenomenology where an operator product expansion is missing, e.g. those obtained from the top-quark decay products, shape observables and the transverse momentum of massive gauge bosons. Only the last one is found to be free from such corrections, while the mass of the system comprising the top decay products has a larger power correction if the perturbative expansion is expressed in terms of a short-distance mass instead of the pole mass. A proper modelization of non-perturbative corrections is crucial in the context of shape observables to obtain reliable strong coupling constant extractions.


Author(s):  
Subhaditya Bhattacharya ◽  
José Wudka

Standard Model (SM) of particle physics has achieved enormous success in describing the interactions among the known fundamental constituents of nature, yet it fails to describe phenomena for which there is very strong experimental evidence, such as the existence of dark matter, and which point to the existence of new physics not included in that model; beyond its existence, experimental data, however, have not provided clear indications as to the nature of that new physics. The effective field theory (EFT) approach, the subject of this review, is designed for this type of situations; it provides a consistent and unbiased framework within which to study new physics effects whose existence is expected but whose detailed nature is known very imperfectly. We will provide a description of this approach together with a discussion of some of its basic theoretical aspects. We then consider applications to high-energy phenomenology and conclude with a discussion of the application of EFT techniques to the study of dark matter physics and its possible interactions with the SM. In several of the applications we also briefly discuss specific models that are ultraviolet complete and may realize the effects described by the EFT.


According to the argument from inductive risk, scientists have responsibilities to consider the consequences of error when they set evidential standards for making decisions such as accepting or rejecting hypotheses. This argument has received a great deal of scholarly attention in recent years. Exploring Inductive Risk brings together a set of concrete case studies with the goals of illustrating the pervasiveness of inductive risk, assisting scientists and policymakers in responding to it, and moving theoretical discussions of this phenomenon forward. The book contains eleven case studies ranging over a wide range of scientific contexts and fields: the drug approval process, high energy particle physics, dual-use research, climate science, research on gender disparities, clinical trials, and toxicology. The chapters are divided into four parts: (1) weighing inductive risk; (2) evading inductive risk; (3) the breadth of inductive risk; and (4) exploring the limits of inductive risk. It includes an introduction that provides a historical overview of the argument from inductive risk and a conclusion that highlights three major topic areas that merit future research. These include the nature of inductive risk and the argument from inductive risk (AIR), the extent to which the AIR can be evaded by defenders of the value-free ideal, and the strategies that the scientific community can employ to handle inductive risk in a responsible fashion.


2013 ◽  
Vol 26 (1) ◽  
pp. 93-136 ◽  
Author(s):  
Koray Karaca

ArgumentIn the theory-dominated view of scientific experimentation, all relations of theory and experiment are taken on a par; namely, that experiments are performed solely to ascertain the conclusions of scientific theories. As a result, different aspects of experimentation and of the relations of theory to experiment remain undifferentiated. This in turn fosters a notion of theory-ladenness of experimentation (TLE) that is toocoarse-grainedto accurately describe the relations of theory and experiment in scientific practice. By contrast, in this article, I suggest that TLE should be understood as anumbrella conceptthat has different senses. To this end, I introduce a three-fold distinction among the theories of high-energy particle physics (HEP) as background theories, model theories, and phenomenological models. Drawing on this categorization, I contrast two types of experimentation, namely, “theory-driven” and “exploratory” experiments, and I distinguish between the “weak” and “strong” senses of TLE in the context of scattering experiments from the history of HEP. This distinction enables identifying the exploratory character of the deep-inelastic electron-proton scattering experiments – performed at the Stanford Linear Accelerator Center (SLAC) between the years 1967 and 1973 – thereby shedding light on a crucial phase of the history of HEP, namely, the discovery of “scaling,” which was the decisive step towards the construction of quantum chromo-dynamics as a gauge theory of strong interactions.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Wolfgang Gregor Hollik ◽  
Cheng Li ◽  
Gudrid Moortgat-Pick ◽  
Steven Paasch

AbstractThe current challenges in high energy physics and cosmology are to build coherent particle physics models to describe the phenomenology at colliders in the laboratory and the observations in the universe. From these observations, the existence of an inflationary phase in the early universe gives guidance for particle physics models. We study a supersymmetric model which incorporates successfully inflation by a non-minimal coupling to supergravity and shows a unique collider phenomenology. Motivated by experimental data, we set a special emphasis on a new singlet-like state at $$97\,\text {GeV}$$ 97 GeV and single out possible observables for a future linear collider that permit a distinction of the model from a similar scenario without inflation. We define a benchmark scenario that is in agreement with current collider and Dark Matter constraints, and study the influence of the non-minimal coupling on the phenomenology. Measuring the singlet-like state with high precision on the percent level seems to be promising for resolving the models, even though the Standard Model-like Higgs couplings deviate only marginally. However, a hypothetical singlet-like state with couplings of about $$20\,\%$$ 20 % compared to a Standard Model Higgs at $$97\,\text {GeV}$$ 97 GeV encourages further studies of such footprint scenarios of inflation.


1996 ◽  
Vol 42 ◽  
pp. 62-78

James Macdonald Cassels was a physicist who, in the course of his career, encompassed a wide range of interests. As a research student he pioneered a new branch of research in the study of solids by slow neutron scattering. While still in his twenties he played an important part in persuading the Government to join the fledgling C.E.R.N. organization in Geneva. By research on the synchrocyclotrons at Harwell and Liverpool he established himself internationally as an authority in the field of high-energy particle physics. Occupying the Liverpool Chair once held by Chadwick he continued the work of his predecessor in developing the Physics Department as a centre of excellence, with the provision of new facilities and the establishment of the nearby Daresbury Laboratory. For many years he was active in the promotion of energy conservation through the concept of combined heat and power from power stations. Towards the end of his career he suffered increasingly from ill-health.


Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 196
Author(s):  
Vitaly Beylin ◽  
Maxim Khlopov ◽  
Vladimir Kuksa ◽  
Nikolay Volchanskiy

The history of dark universe physics can be traced from processes in the very early universe to the modern dominance of dark matter and energy. Here, we review the possible nontrivial role of strong interactions in cosmological effects of new physics. In the case of ordinary QCD interaction, the existence of new stable colored particles such as new stable quarks leads to new exotic forms of matter, some of which can be candidates for dark matter. New QCD-like strong interactions lead to new stable composite candidates bound by QCD-like confinement. We put special emphasis on the effects of interaction between new stable hadrons and ordinary matter, formation of anomalous forms of cosmic rays and exotic forms of matter, like stable fractionally charged particles. The possible correlation of these effects with high energy neutrino and cosmic ray signatures opens the way to study new physics of strong interactions by its indirect multi-messenger astrophysical probes.


Sign in / Sign up

Export Citation Format

Share Document