scholarly journals MATRIX MODEL FOR NONCOMMUTATIVE GRAVITY AND GRAVITATIONAL INSTANTONS

2004 ◽  
Vol 19 (02) ◽  
pp. 227-247 ◽  
Author(s):  
P. VALTANCOLI

We introduce a matrix model for noncommutative gravity, based on the gauge group U (2)⊗ U (2). The vierbein is encoded in a matrix Yμ, having values in the coset space U (4)/( U (2)⊗ U (2)), while the spin connection is encoded in a matrix Xμ, having values in U (2)⊗ U (2). We show how to recover the Einstein equations from the θ→0 limit of the matrix model equations of motion. We stress the necessity of a metric tensor, which is a covariant representation of the gauge group in order to set up a consistent second order formalism. We finally define noncommutative gravitational instantons as generated by U (2)⊗ U (2) valued quasi-unitary operators acting on the background of the matrix model. Some of these solutions have naturally self-dual or anti-self-dual spin connections.

2004 ◽  
Vol 19 (03) ◽  
pp. 361-370 ◽  
Author(s):  
P. VALTANCOLI

We propose an action for gravity on a fuzzy sphere, based on a matrix model. We find striking similarities with an analogous model of two-dimensional gravity on a noncommutative plane, i.e. the solution space of both models is spanned by pure U(2) gauge transformations acting on the background solution of the matrix model, and there exist deformations of the classical diffeomorphisms which preserve the two-dimensional noncommutative gravity actions.


1998 ◽  
Vol 13 (23) ◽  
pp. 4023-4047 ◽  
Author(s):  
G. BIMONTE ◽  
R. MUSTO ◽  
P. VITALE ◽  
A. STERN

The usual description of (2+1)-dimensional Einstein gravity as a Chern–Simons (CS) theory is extended to a one parameter family of descriptions of 2+1 Einstein gravity. This is done by replacing the Poincaré gauge group symmetry by a q-deformed Poincaré gauge group symmetry, with the former symmetry recovered when q → 1. As a result, we obtain a one parameter family of Hamiltonian formulations for 2+1 gravity. Although formulated in terms of noncommuting dreibeins and spin-connection fields, our expression for the action and our field equations, appropriately ordered, are identical in form to the ordinary ones. Moreover, starting with a properly defined metric tensor, the usual metric theory can be built; the Christoffel symbols and space–time curvature having the usual expressions in terms of the metric tensor, and being represented by c-numbers. In this article, we also couple the theory to particle sources, and find that these sources carry exotic angular momentum. Finally, problems related to the introduction of a cosmological constant are discussed.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Ping Gao ◽  
Daniel L. Jafferis ◽  
David K. Kolchmeyer

Abstract We study Jackiw-Teitelboim gravity with dynamical end of the world branes in asymptotically nearly AdS2 spacetimes. We quantize this theory in Lorentz signature, and compute the Euclidean path integral summing over topologies including dynamical branes. The latter will be seen to exactly match with a modification of the SSS matrix model. The resolution of UV divergences in the gravitational instantons involving the branes will lead us to understand the matrix model interpretation of the Wilsonian effective theory perspective on the gravitational theory. We complete this modified SSS matrix model nonperturbatively by extending the integration contour of eigenvalues into the complex plane. Furthermore, we give a new interpretation of other phases in such matrix models. We derive an effective W(Φ) dilaton gravity, which exhibits similar physics semiclassically. In the limit of a large number of flavors of branes, the effective extremal entropy S0,eff has the form of counting the states of these branes.


1993 ◽  
Vol 08 (33) ◽  
pp. 3201-3214 ◽  
Author(s):  
STEFANO PANZERI

We find the exact matrix model description of two-dimensional Yang-Mills theories on a cylinder or on a torus and with an arbitrary semisimple compact gauge group. This matrix model is the singlet sector of a c=1 matrix model where the matrix field is in the fundamental representation of the gauge group. We also prove that the basic constituents of the theory are Sutherland fermions in the zero coupling limit, and this leads to an interesting connection between two-dimensional gauge theories and one-dimensional integrable systems. In particular we derive for all the classical groups the exact grand canonical partition function of the free fermion system corresponding to a two-dimensional gauge theory on a torus.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Marco S. Bianchi

Abstract I consider three-point functions of twist-one operators in ABJM at weak coupling. I compute the structure constant of correlators involving one twist-one un-protected operator and two protected ones for a few finite values of the spin, up to two-loop order. As an application I enforce a limit on the gauge group ranks, in which I relate the structure constant for three chiral primary operators to the expectation value of a supersymmetric Wilson loop. Such a relation is then used to perform a successful five-loop test on the matrix model conjectured to describe the supersymmetric Wilson loop.


2020 ◽  
Vol 18 (11) ◽  
pp. 2183-2204
Author(s):  
E.I. Moskvitina

Subject. This article deals with the issues related to the formation and implementation of the innovation capacity of the Russian Federation subjects. Objectives. The article aims to develop the organizational and methodological foundations for the formation of a model of the regional innovation subsystem. Methods. For the study, I used the methods of analysis and synthesis, economics and statistics analysis, and the expert assessment method. Results. The article presents a developed basis of the regional innovation subsystem matrix model. It helps determine the relationship between the subjects and the parameters of the regional innovation subsystem. To evaluate the indicators characterizing the selected parameters, the Volga Federal District regions are considered as a case study. The article defines the process of reconciliation of interests between the subjects of regional innovation. Conclusions. The results obtained can be used by regional executive bodies when developing regional strategies for the socio-economic advancement of the Russian Federation subjects.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Wolfgang Mück

Abstract Supersymmetric circular Wilson loops in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills theory are discussed starting from their Gaussian matrix model representations. Previous results on the generating functions of Wilson loops are reviewed and extended to the more general case of two different loop contours, which is needed to discuss coincident loops with opposite orientations. A combinatorial formula representing the connected correlators of multiply wound Wilson loops in terms of the matrix model solution is derived. Two new results are obtained on the expectation value of the circular Wilson loop, the expansion of which into a series in 1/N and to all orders in the ’t Hooft coupling λ was derived by Drukker and Gross about twenty years ago. The connected correlators of two multiply wound Wilson loops with arbitrary winding numbers are calculated as a series in 1/N. The coefficient functions are derived not only as power series in λ, but also to all orders in λ by expressing them in terms of the coefficients of the Drukker and Gross series. This provides an efficient way to calculate the 1/N series, which can probably be generalized to higher-point correlators.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ashoke Sen

Abstract In a recent paper, Balthazar, Rodriguez and Yin found remarkable agreement between the one instanton contribution to the scattering amplitudes of two dimensional string theory and those in the matrix model to the first subleading order. The comparison was carried out numerically by analytically continuing the external energies to imaginary values, since for real energies the string theory result diverges. We use insights from string field theory to give finite expressions for the string theory amplitudes for real energies. We also show analytically that the imaginary parts of the string theory amplitudes computed this way reproduce the full matrix model results for general scattering amplitudes involving multiple closed strings.


Author(s):  
D. W. Sciama

ABSTRACTIt is suggested, on heuristic grounds, that the energy-momentum tensor of a material field with non-zero spin and non-zero rest-mass should be non-symmetric. The usual relationship between energy-momentum tensor and gravitational potential then implies that the latter should also be a non-symmetric tensor. This suggestion has nothing to do with unified field theory; it is concerned with the pure gravitational field.A theory of gravitation based on a non-symmetric potential is developed. Field equations are derived, and a study is made of Rosenfeld identities, Bianchi identities, angular momentum and the equations of motion of test particles. These latter equations represent the geodesics of a Riemannian space whose contravariant metric tensor is gij–, in agreement with a result of Lichnerowicz(9) on the bicharacteristics of the Einstein–Schrödinger field equations.


2015 ◽  
Vol 24 (12) ◽  
pp. 1544015 ◽  
Author(s):  
Eric Bergshoeff ◽  
Wout Merbis ◽  
Alasdair J. Routh ◽  
Paul K. Townsend

Consistency of Einstein’s gravitational field equation [Formula: see text] imposes a “conservation condition” on the [Formula: see text]-tensor that is satisfied by (i) matter stress tensors, as a consequence of the matter equations of motion and (ii) identically by certain other tensors, such as the metric tensor. However, there is a third way, overlooked until now because it implies a “nongeometrical” action: one not constructed from the metric and its derivatives alone. The new possibility is exemplified by the 3D “minimal massive gravity” model, which resolves the “bulk versus boundary” unitarity problem of topologically massive gravity with Anti-de Sitter asymptotics. Although all known examples of the third way are in three spacetime dimensions, the idea is general and could, in principle, apply to higher dimensional theories.


Sign in / Sign up

Export Citation Format

Share Document