EFFECT OF VARIOUS HEAT TREATMENT PROCESSES ON FATIGUE BEHAVIOR OF TOOL STEEL FOR COLD FORGING DIE

2008 ◽  
Vol 22 (31n32) ◽  
pp. 5495-5502
Author(s):  
S. U. JIN ◽  
S. S. KIM ◽  
Y. S. LEE ◽  
Y. N. KWON ◽  
J. H. LEE

Effects of various heat treatment processes, including "Q/T (quenching and tempering)", "Q/CT/T (Quenching, cryogenic treatment and tempering)", "Q/T (quenching and tempering) + Ti -nitriding" and "Q/CT/T (Cryogenic treatment and tempering) + Ti -nitriding", on S - N fatigue behavior of AISI D2 tool steel were investigated. The optical micrographs and Vicker's hardness values at near surface and core area were examined for each specimen. Uniaxial fatigue tests were performed by using an electro-magnetic resonance fatigue testing machine at a frequency of 80 Hz and an R ratio of -1. The overall resistance to fatigue tends to decrease significantly with Ti -nitriding treatment compared to those for the general Q/T and Q/CT/T specimens. The reduced resistance to fatigue with Ti -nitriding is discussed based on the microstructural and fractographic analyses.

2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


Author(s):  
Karanbir Singh ◽  
Aditya Chhabra ◽  
Vaibhav Kapoor ◽  
Vaibhav Kapoor

This study is conducted to analyze the effect on the Hardness and Micro Structural Behaviour of three Sample Grades of Tool Steel i.e. EN-31, EN-8, and D3 after Heat Treatment Processes Such As Annealing, Normalizing, and Hardening and Tempering. The purpose of Selecting Tool Steel is Because Tool Steel is Mostly Used in the Manufacturing Industry.This study is based upon the empirical study which means it is derived from experiment and observation rather than theory.


2016 ◽  
Vol 17 ◽  
pp. 14-30 ◽  
Author(s):  
Okechukwu P. Nwachukwu ◽  
Alexander V. Gridasov ◽  
Ekaterina A. Gridasova

This review looks into the state of gigacycle fatigue behavior of some structural materials used in engineering works. Particular attention is given to the use of ultrasonic fatigue testing machine (USF-2000) due to its important role in conducting gigacycle fatigue tests. Gigacycle fatigue behavior of most materials used for very long life engineering applications is reviewed.Gigacycle fatigue behavior of magnesium alloys, aluminum alloys, titanium alloys, spheroid graphite cast iron, steels and nickel alloys are reviewed together with the examination of the most common material defects that initiate gigacycle fatigue failures in these materials. In addition, the stage-by-stage fatigue crack developments in the gigacycle regime are reviewed. This review is concluded by suggesting the directions for future works in gigacycle fatigue.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3302 ◽  
Author(s):  
Abbas Razavykia ◽  
Cristiana Delprete ◽  
Paolo Baldissera

Cryogenic treatment is a supplemental structural and mechanical properties refinement process to conventional heat treatment processes, quenching, and tempering. Cryogenic treatment encourages the improvement of material properties and durability by means of microstructural alteration comprising phase transfer, particle size, and distribution. These effects are almost permanent and irreversible; furthermore, cryogenic treatment is recognized as an eco-friendly, nontoxic, and nonexplosive process. In addition, to encourage the application of sustainable techniques in mechanical and manufacturing engineering and to improve productivity in current competitive markets, cryo-treatment can be considered as a promising process. However, while improvements in the properties of materials after cryogenic treatment are discussed by the majority of reported studies, the correlation between microstructural alteration and mechanical properties are unclear, and sometimes the conducted investigations are contradictory with each other. These contradictions provide different approaches to perform and combine cryogenic treatment with pre-and post-processing. The present literature survey, mainly focused on the last decade, is aimed to address the effects of cryogenic treatment on microstructural alteration and to correlate these changes with mechanical property variations as a consequence of cryo-processing. The conclusion of the current review discusses the development and outlines the trends for the future research in this field.


2007 ◽  
Vol 353-358 ◽  
pp. 142-145 ◽  
Author(s):  
Ki Weon Kang ◽  
Byeong Choon Goo ◽  
J.H. Kim ◽  
Heung Seob Kim ◽  
Jung Kyu Kim

This paper deals with the fatigue behavior and its statistical properties of SM490A steel at various temperatures, which is utilized in the railway vehicle. For these goals, the tensile ad fatigue tests were performed by using a servo-hydraulic fatigue testing machine at three temperatures: +20°C, -10°C and -40°C. The static strength and fatigue limits of SM490A steel were increased with decreasing of test temperature. The probabilistic properties of fatigue behavior are investigated by means of probabilistic stress-life (P-S-N) curve and they are well in conformance with the experimental results regardless of temperature. Also, based on P-S-N curves, the variation of fatigue life is investigated and as the temperature decreases, the variation of fatigue life increases moderately.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 627 ◽  
Author(s):  
Alejandro Gonzalez-Pociño ◽  
Florentino Alvarez-Antolin ◽  
Juan Asensio-Lozano

Vanadis 10 steel is a powder metallurgy processed tool steel. The aim of the present study is to analyze the microstructural variation in this steel that takes place when the process variables related to the heat treatments of quenching and tempering are modified. Specifically, the destabilization of austenite, the precipitation of secondary carbides and the amount of retained austenite were analyzed. The research methodology employed was a Design of Experiments (DoE). The percentage and types of precipitated crystalline phases were determined by XRD, while the microstructure was revealed by means of SEM-energy-dispersive X-ray spectroscopy (EDX). The destabilization of austenite was favored by tempering at 600 °C for at least 4 h. These same conditions stimulated the removal of the retained austenite and the precipitation of M7C3 secondary carbides. For the precipitation of MC secondary carbides, it was necessary to maintain the steel at a temperature of 1100 °C for at least 8 h. The highest hardness values were obtained when the tempering temperature was lower (500 °C). Tempering in air or oil did not have a significant influence on the hardness of the steel after double or triple tempering at 500 or 600 °C. These results allow the manufacturers of industrial tools and components that use this type of steel in the annealed state as a material to define the most suitable quenching and tempering heat treatment to optimize the in-service behavior of these steels.


2013 ◽  
Vol 690-693 ◽  
pp. 164-167
Author(s):  
Xiao Long Hu ◽  
Lian Fei Tan ◽  
Qing Xuan Wang

This paper present that experimental research on the fatigue behavior of beam with Q345c steel corrugated webs. There are four test specimens with different structural feature will be tested in three-point bending to load by Shinmadzu 4890 fatigue testing machine. Moreover, the finite-element analysis will be used to simulate the fatigue behavior of common beam with corrugated steel web. Weld will be our focus on importance object.


2005 ◽  
Vol 297-300 ◽  
pp. 1846-1851 ◽  
Author(s):  
Q.Y. Wang ◽  
Hong Yan Zhang ◽  
M.R. Sriraman ◽  
Shou Xin Li

For many applications, the understanding of very long life fatigue in materials becomes extremely important. In this study, the fatigue behavior of bearing steel GCr15 (conforming to AISI 52100) at very high number of cycles has been examined. Experiments on hourglass specimens were conducted in air at room temperature, for fully reversed loading condition (R=-1), using a piezoelectric fatigue testing machine operating at a frequency of 20kHz. The results indicate that the S-N data does not reach a horizontal asymptote (signifying the fatigue limit) at 107 cycles, as conventionally believed, and that the material can fracture up to 109 cycles. Therefore, to quote a fatigue limit at 107 cycles may not hold good for the material studied. The influence of defects (such as inclusions) on the crack initiation and fracture was analyzed by scanning electron microscopy.


2021 ◽  
Vol 4 (1) ◽  
pp. Manuscript
Author(s):  
Thee Chowwanonthapunya ◽  
Chaiyawat Peeratatsuwan ◽  
Manote Rithinyo

Tool steels used in marine industries demand for the effective approach to enhance their properties. Normally, conventional heat treatment is widely used to increase the performance of tool steels. However, this method cannot fully enhance the tool steel performance. On the other hand, cryogenic treatment is a supplementary process to the conventional heat treatment, which can promote the conversion of retained austenite to martensite and accelerate the precipitation of fine carbides. In this paper, a systematic review of cryogenic treatment of tool steels was presented. A wide range of useful investigations was reviewed, particularly in the details of the transformation of retained austenite to martensite and the precipitation of the fine carbides. A case study on a tool steel subjected to conventional heat treatment, conventional cold treatment, and deep cryogenic treatment was also given and discussed to give an insight in the cryogenic treatment of tool steels.


Sign in / Sign up

Export Citation Format

Share Document