A GLASS TRANSITION MODEL FOR SHAPE MEMORY POLYMER AND ITS COMPOSITE

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1248-1253 ◽  
Author(s):  
BO ZHOU ◽  
YAN-JU LIU ◽  
XIN LAN ◽  
JIN-SONG LENG ◽  
SUNG-HO YOON

As novel smart materials, shape memory polymer (SMP) and its composite (SMPC) have the ability to regain its original shape after undergoing significant deformation upon heating or other external stimuli such as light, chemic condition and so on. Their special behaviors much depends on the glass transitions due to the increasing of material temperature. Dynamic Mechanical Analysis (DMA) tests are performed on the styrene-based SMP and its carbon fiber fabric reinforced SMPC to investigate their glass transition behaviors. Three glass transition critical temperatures of SMP or SMPC are defined and a method to determine their values from DMA tests is supposed. A glass transition model is developed to describe the glass transition behaviors of SMP or SMPC based on the results of DMA tests. Numerical calculations illustrate the method determining the glass transition critical temperature is reasonable and the model can well predict the glass transition behaviors of SMP or SMPC.

Author(s):  
Fei Liang ◽  
Jihua Gou ◽  
He Shen ◽  
Yunjun Xu ◽  
Bob Mabbott

Shape memory polymers (SMPs) are one of the most popular smart materials due to light weight and high elastic deformation capability. In this study, highly conductive carbon nanofibers paper (CNFP) was coated on the surface of SMP as a conductive layer for electro actuation of SMP. To overcome the drawback of low modulus and low strength of shape memory polymer (SMP), continuous carbon fiber reinforcement was also incorporated with SMP by autoclave processing. The dynamic mechanical analysis (DMA) result showed over 600% increase of storage modulus of SMP by introducing carbon fiber reinforcement. Also, the shape recovery time of SMP has been reduced over 150%, while the recovery ratio of SMP has been improved to 99% by incorporating with carbon fiber reinforcement. Additionally, the mechanical property degradation of SMP composites has been investigated after different electro actuation cycles. After 50 actuation cycles, the decrease of flexural modulus of SMP composites is negligible (< 2%), and the ultimate flexural strength of SMP composites only decreased 25%. The SMP composite shows high strength and modulus, and good durability.


2008 ◽  
Vol 47-50 ◽  
pp. 690-693 ◽  
Author(s):  
Da Wei Zhang ◽  
Jin Song Leng ◽  
Yan Ju Liu

This paper is concerned about the synthesis of shape memory styrene copolymer and the investigation of the influence of radialization dosage on its shape memory effect. As one of novel actuators in smart materials, shape memory polymers (SMPs) have been investigated intensively. Styrene copolymer with proper cross-linking degree can exhibit shape memory effect (SME). In this paper, the influence of radialization on shape memory effect of styrene copolymer was investigated through altering the dosage of radialization. The radialization dosage of styrene copolymer was determined by changed radicalization time. The glass transition temperature (Tg) of styrene copolymerwas measured by Dynamic Mechanical Analysis (DMA). The shape memory performance of styrene copolymer with different radiated dosage was also evaluated. Results indicated that the shape memory polymer (SMP) was synthesized successfully. The Tg increased from 60°C to 65°C followed by increasing the radialization dosage. Moreover, the SMP experienced good SME and the largest reversible strain of the SMP reached as high as 150%. When heating above Tg+30°C (different copolymers performed different Tg), the shape recovery speed of the copolymers increased with increasing the radialization dosage. However, the recovery speed decreased with increasing the radialization dosage at the same temperature of 95°C.


2009 ◽  
Vol 419-420 ◽  
pp. 497-500 ◽  
Author(s):  
Bo Zhou ◽  
Yan Ju Liu ◽  
Jin Song Leng ◽  
Tao Li

Dynamic mechanical analysis (DMA) tests are conducted on styrene-based shape memory polymer(SMP) to investigate its glass transition behaviors. The tensile tests at various temperatures are operated to detect the stress-strain relationship of styrene-based SMP. The material elastic moduli and yielding limits at 25oC, 30oC, 40oC, and 50oC are determined according to the results of tensile test. A new material parameter function is supposed to express the glass transition behavior of styrene-based SMP. The shape memory thermo-mechanical cycle of styrene-based SMP is numerically simulated by Tobushi’s constitutive equation coupled with the new material parameter function. Numerical results show the new material parameter function can express the thermo-mechanical properties of styrene-based SMP effectively.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Nilesh Tiwari ◽  
A. A. Shaikh

AbstractBuckling and vibration study of the shape memory polymer composites (SMPC) across the glass transition temperature under heterogeneous loading conditions are presented. Finite element analysis based on C° continuity equation through the higher order shear deformation theory (HSDT) is employed considering non linear Von Karman approach to estimate critical buckling and vibration for the temperature span from 273 to 373 K. Extensive numerical investigations are presented to understand the effect of temperature, boundary conditions, aspect ratio, fiber orientations, laminate stacking and modes of phenomenon on the buckling and vibration behavior of SMPC beam along with the validation and convergence study. Effect of thermal conditions, particularly in the glass transition region of the shape memory polymer, is considerable and presents cohesive relation between dynamic modulus properties with magnitude of critical buckling and vibration. Moreover, it has also been inferred that type of axial loading condition along with the corresponding boundary conditions significantly affect the buckling and vibration load across the glass transition region.


Author(s):  
L. Santo ◽  
L. Iorio ◽  
G. M. Tedde ◽  
F. Quadrini

Shape Memory Polymer Composites (SMPCs) are smart materials showing the structural properties of long-fiber polymer-matrix together with the functional behavior of shape memory polymers. In this study, SM carbon fiber reinforced (CFR) composites have been produced by using a SM interlayer between two CFR prepregs. Their SM properties have been evaluated in comparison with traditional structural CFR composites without the SM interlayer by using an especially designed test. Active and frozen forces are measured during a thermo-mechanical cycle in the three-point bending configuration. Experimental results show that SMPCs are able to fix a temporary deformed shape by freezing high stresses.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4246 ◽  
Author(s):  
Yujie Chen ◽  
Chi Chen ◽  
Hafeez Ur Rehman ◽  
Xu Zheng ◽  
Hua Li ◽  
...  

Shape-memory materials are smart materials that can remember an original shape and return to their unique state from a deformed secondary shape in the presence of an appropriate stimulus. This property allows these materials to be used as shape-memory artificial muscles, which form a subclass of artificial muscles. The shape-memory artificial muscles are fabricated from shape-memory polymers (SMPs) by twist insertion, shape fixation via Tm or Tg, or by liquid crystal elastomers (LCEs). The prepared SMP artificial muscles can be used in a wide range of applications, from biomimetic and soft robotics to actuators, because they can be operated without sophisticated linkage design and can achieve complex final shapes. Recently, significant achievements have been made in fabrication, modelling, and manipulation of SMP-based artificial muscles. This paper presents a review of the recent progress in shape-memory polymer-based artificial muscles. Here we focus on the mechanisms of SMPs, applications of SMPs as artificial muscles, and the challenges they face concerning actuation. While shape-memory behavior has been demonstrated in several stimulated environments, our focus is on thermal-, photo-, and electrical-actuated SMP artificial muscles.


2020 ◽  
Vol 31 (10) ◽  
pp. 1243-1283 ◽  
Author(s):  
Ebrahim Yarali ◽  
Ali Taheri ◽  
Mostafa Baghani

Shape memory polymers are a class of smart materials, which are capable of fixing their deformed shapes, and can return to their original shape in reaction to external stimulus such as heat. Also due to their exceptional properties, they are mostly used in four-dimensional printing applications. To model and investigate thermomechanical response of shape memory polymers mathematically, several constitutive equations have been developed over the past two decades. The purpose of this research is to provide an up-to-date review on structures, classifications, applications of shape memory polymers, and constitutive equations of thermally responsive shape memory polymers and their composites. First, a comprehensive review on the properties, structure, and classifications of shape memory polymers is conducted. Then, the proposed models in the literature are presented and discussed, which, particularly, are focused on the phase transition and thermo-viscoelastic approaches for conventional, two-way as well as multi-shape memory polymers. Then, a statistical analysis on constitutive relations of thermally activated shape memory polymers is carried out. Finally, we present a summary and give some concluding remarks, which could be helpful in selection of a suitable shape memory polymer constitutive model under a typical application.


Sign in / Sign up

Export Citation Format

Share Document