INFLUENCE OF VAN DER WAALS FORCE ON STATIC BEHAVIOR OF NANO/MICROMIRRORS UNDER CAPILLARY FORCE

2012 ◽  
Vol 26 (07) ◽  
pp. 1250056 ◽  
Author(s):  
HAMID MOEENFARD ◽  
ALI DARVISHIAN ◽  
HASSAN ZOHOOR ◽  
MOHAMMAD TAGHI AHMADIAN

In the current paper, the effect of van der Waals (vdW) force on the static behavior and pull-in characteristics of nano/micromirrors under capillary force is investigated. At first, the dimensionless equation governing the static behavior of nano/micromirrors is obtained. The dependence of the critical tilting angle on the physical and geometrical parameters of the nano/micromirror and its supporting torsional beams is investigated. It is found that the existence of vdW force can considerably reduce the stability limits of the nano/micromirror. It is also found that rotation angle of the mirror due to capillary force highly depends on the vdW force applied to the mirror. Finally, analytical tool Homotopy Perturbation Method (HPM) is utilized for prediction of the nano/micromirror behavior under combined capillary and vdW force. It is observed that a sixth order perturbation approximation accurately predicts the rotation angle and stability limits of the mirror. The results of this paper can be used for successful fabrication of nano/micromirrors using wet etching release process where capillary force plays a major role in the system.

Author(s):  
Ali Darvishian ◽  
Hamid Moeenfard ◽  
Hasan Zohoor ◽  
Mohammad Taghi Ahmadian

The current paper deals with the problem of static instability of Micro/Nano mirrors under the combined effect of capillary force and van der Waals force. First the governing equations of the statical behavior of Micro/Nano mirrors under the combined effect of capillary force and casimir force is obtained using the newtons first law of motion. The dependence of the critical tilting angle on the physical and geometrical parameters of the nano/micromirror and its supporting torsional beams is investigated. It is found that existence of vdW torque can considerably reduce the stability limits of the nano/micromirror. It is also found that rotation angle of the mirror due to capillary force highly depends on the vdW toque applied to the mirror. Finally analytical tool Homotopy Perturbation Mehtod (HPM) is utilized for prediction of the nano/micromirror behaviour under combined capillary and vdW force. It is observed that a sixth order perturbation approximation accurately predicts the rotation angle and stability limits of the mirror. Results of this paper can be used for successful fabrication of nano/micromirrors using wet etching process where capillary force plays a major role in the system.


Author(s):  
Hamid Moeenfard ◽  
Ali Darvishian ◽  
Mohammad Taghi Ahmadian

The coupling effect between torsion and bending in nano/micromirrors under the combined effect of capillary force and van der Waals (vdW) force is presented in this paper. At the first, the dimensionless equations governing the statical behavior of the nano/micromirror are obtained using the minimum total potential energy principle. Then the equations governing the pull-in state of the mirror are obtained using the implicit function theorem. The related results show that neglecting bending effect can lead to considerable overestimation in predicting the pull-in limits of the nano/micromirror under combined vdW and capillary forces. It is observed that vdW force reduces the pull-in angle and pull-in deflection of the supporting torsion beams of the mirror. The static behavior of the nano/micromirror under capillary and vdW loading is also studied and the results reveal that the static behavior of the nano/micromirror under capillary and vdW forces highly depends on the bending of the torsion beams. The results of this paper can be used for a safe and stable design and fabrication of mirrors using the wet etching process, where the gap between the mirror and the underneath substrate is sufficiently small and as a results both capillary and vdW forces have significant role in the stability of the system.


Author(s):  
Hamid Moeenfard ◽  
Ali Darvishian ◽  
Mohammad Taghi Ahmadian

This paper deals with the problem of static instability of Micro/Nano mirrors under the combined effect of capillary force and Casimir force. At the First the governing equations of the statical behavior of Micro/Nano mirrors under the combined effect of capillary force and casimir force is obtained. The dependency of the critical tilting angle on the physical and geometrical parameters of the nano/micromirror and its supporting torsional beams is investigated. It is found that existence of casimir force can considerably reduce the stability limits of nano/micromirror. It is also found that rotation angle of the mirror due to capillary force highly depends on the casimir force applied to the mirror. Finally analytical tool Homotopy Perturbation Method (HPM) is utilized for prediction of the mirror’s behaviour under combined capillary and casimir forces. It is observed that a sixth order perturbation approximation accurately predicts the rotation angle and stability limits of the mirror. Results of this paper can be used for successful fabrication of nano/micromirrors using wet etching process where capillary force plays a major role in the system.


Author(s):  
Hamid Moeenfard ◽  
Ali Darvishian ◽  
Hassan Zohoor ◽  
Mohammad Taghi Ahmadian

In this article, the static behavior of micromirrors under the effect of capillary force is studied. The dimensionless equations governing the static behavior and the pull-in state of the micromirror under capillary force are obtained, and the effects of different geometrical parameters on the pull-in angle of micromirrors are investigated. The static behavior of micromirrors is studied both numerically and analytically using the homotopy perturbation method. It is observed that with increasing the instability number defined in this article, the rotation angle of the micromirror is increased and suddenly the pull-in occurs. The results of the presented model are then verified by comparing them with the results of finite element simulations performed in the commercial finite element model software ANSYS. The agreement between the results of finite element model and those of the proposed analytical model shows that homotopy perturbation method can be used as a fast and accurate tool for predicting mirror’s behavior under capillary force.


2020 ◽  
Vol 22 (4) ◽  
pp. 1061-1076
Author(s):  
Wafa Bensmain ◽  
Mohammed Benlebna ◽  
Boualem Serier ◽  
Bel Abbes ◽  
Bachir Bouiadjra

AbstractOsseointegration is a fundamental phenomenon of dental implantology. It ensures the stability, the safety and the durability of dental implants and predictable clinical success in long-term. The geometric form of the implant is a defining parameter of osseointegration and implant-bone charge transfer. This is the essential constitutes of this study. In fact, we demonstrate using the finite elements method with tridimensional numerical computations, that the geometrical parameters of the implant conditionate the level and the repartition of the stresses, induced in the cortical bone and the spongy bone during the masticatory process, simulated here by dynamic charging. The effect of several parameters [size and conicity of the implant neck, size and radius of curvature of the implant apex] and the shape of the implant corps on the biomechanical behavior of the bone. The latest was analyzed in terms of variation of the equivalent stress induced in the bone. The purpose of this analysis was the developing of an implant form allowing stress relaxation, during the mastication process, in the living tissue.


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


1998 ◽  
Vol 1 (1) ◽  
pp. 23-39
Author(s):  
Carter J. Kerk ◽  
Don B. Chaffin ◽  
W. Monroe Keyserling

The stability constraints of a two-dimensional static human force exertion capability model (2DHFEC) were evaluated with subjects of varying anthropometry and strength capabilities performing manual exertions. The biomechanical model comprehensively estimated human force exertion capability under sagittally symmetric static conditions using constraints from three classes: stability, joint muscle strength, and coefficient of friction. Experimental results showed the concept of stability must be considered with joint muscle strength capability and coefficient of friction in predicting hand force exertion capability. Information was gained concerning foot modeling parameters as they affect whole-body stability. Findings indicated that stability limits should be placed approximately 37 % the ankle joint center to the posterior-most point of the foot and 130 % the distance from the ankle joint center to the maximal medial protuberance (the ball of the foot). 2DHFEC provided improvements over existing models, especially where horizontal push/pull forces create balance concerns.


1993 ◽  
Vol 171 (1-2) ◽  
pp. 89-95 ◽  
Author(s):  
Sean A.C. McDowell ◽  
A. David Buckingham

2021 ◽  
Author(s):  
Tianying Wang ◽  
Yanjun Zhou ◽  
Honglin Tang ◽  
Shihua Zhang ◽  
Haiqing Tian

Abstract The JCSM concept (short for Jackup Combined Semisubmersible Multifunction Platform) is a new type of semisubmersible platform presented by the first author, which overcomes the shortcomings of the available semisubmersible platforms, and combines the advantages of the traditional semisubmersible platform, the Jackup platform and the new FPSO concept - IQFP. Due to the complicated interaction between stability and hydrodynamic performance, it is necessary to explore the effect of geometrical parameters of the main body on the stability and hydrodynamic performance in order to obtain the optimal design plan of a JCSM platform. Firstly, the structure components and innovations of the JCSM were briefly reviewed in order to facilitate readers to understand its full picture. Then, six independent geometric parameters were selected by carefully studying the shape characteristics of the initial design plan of a JCSM study case. Furthermore, the stability heights and motion responses of various floating bodies of the JCSM case with different geometric parameters in wave were calculated using boundary element method based on potential flow theory. Lastly, effect of the shape parameters on stability and hydrodynamic performance of the JCSM was qualitatively evaluated. The research would shed lights on the shape design of the JCSM main body.


Sign in / Sign up

Export Citation Format

Share Document